

ScanTTM a Shortcut to Reliable AFM results

Dr. Vyacheslav Polyakov, Director of R&D

- Introduction
- Motivation for the development of ScanTTM and RapidScanTM technologies
- Automated optimization of scanning parameters in tapping mode AFM: physical background, basics of the algorithms and examples of application
- Rapid scanning
- Summary

Intro: Atomic Force Microscopy

- 3D-imaging of surface topography with (sub-)nm spatial resolution
- Imaging of nanomechanical, electrical, magnetic and other surface properties with nm-scale spatial resolution ("more than 50 AFM modes")
- Can be combined with optical techniques in UV, visible, IR and THz ranges (AFM-Raman, nano-IR AFM, IR and THz s-SNOM)
- Can be used under different environments (vacuum, liquid, controlled atmosphere, temperature variations, etc.)
- Field of view: up to \approx 100 μ m in X and Y; \approx 10 \div 20 μ m in Z
- Scan rate: $1 \div 2$ Hz

Intro: NT-MDT SI Product Line

• HybriD Mode™

Intro: Basic AFM Modes

Motivation: Atomic Force Microscopy

- 3D-imaging of surface topography with (sub-)nm spatial resolution
- Field of view: up to \approx 100 μ m in X and Y; \approx 10 \div 20 μ m in Z
- Scan rate: 1 ÷ 2 Hz
- Imaging of nanomechanical, electrical, magnetic and other surface properties with nm-scale spatial resolution ("more than 50 AFM modes")
- Can be combined with optical techniques in UV, visible, IR and THz ranges (AFM-Raman, nano-IR AFM, IR and THz s-SNOM)
- Can be used under different environments (vacuum, liquid, controlled atmosphere, temperature variations, etc.)

Motivation: Basic AFM Modes

Motivation: VEGAAFM

Motivation: NTEGRA Nano IR – IR s-SNOM measurements

- IR s-SNOM microscopy and spectroscopy with 10 nm spatial resolution
- Wide spectral range of operation: $3-12 \ \mu m$
- Incredibly low thermal drift and high signal stability
- Versatile AFM with advanced modes: SRI (conductivity), KPFM (surface potential), SCM (capacitance), MFM (magnetic properties), PFM (piezoelectric forces)
- HybriD Mode[™] quantitative nanomechanical mapping
- Integration with microRaman (optional)

Automated optimization of scanning parameters in tapping mode AFM:

physical background, basics of the algorithms and examples of application

Tapping (semicontact) AFM

Automated optimization of scanning parameters

Key scanning parameters:

- **A**₀ Amplitude of cantilever oscillations
- **SP** Set point amplitude
- **k**_i Integral feedback gain
- V_x Scan speed

Additional scanning parameters:

- LP low-pass filter band
- **k**_p Proportional feedback gain

Known parameters:

- **Probe parameters**: resonant frequency, Q-factor
- Mag to amplitude slope conversion
- Sample roughness (?)

Automated optimization of scanning parameters

Fluoroalkanes $F_{14}H_{20}$ on Si. Scan size 5×5 µm

Automated optimization of scanning parameters

Is it possible to **automatically optimize** scanning parameters while operating in **tapping mode** AFM to measure the topography and phase contrast?

- How feedback system works in tapping mode AFM?
- Parachuting effects
- Mode switching in tapping mode AFM
- How to optimize integral feedback gain for tapping mode AFM?

What should be objective function for optimization?

Parachuting effect in tapping mode AFM

Ref.: T. Ando, "Control Techniques in High-Speed Atomic Force Microscopy," ACC: 3194-3200, 2008

Parachuting effect in tapping mode AFM

Parachuting effect in tapping mode AFM

Parachuting and topography effects in phase contrast

Phase signal (no parachuting) and compensation of topography influence

Po +0.5*[|Pf-Pb| - (|Pb-Po| + Pf-Po|)]

Phase signal in case of parachuting and its compensation

Parachuting and topography effects in phase contrast

Mode switching in tapping mode AFM

Ref.: R. Garcia, R. Perez, "Dinamic atomic force microscopy methods", Surf. Science Rep. 47, 197-301, 2002

Feedback gain optimization in tapping mode AFM

$$\varepsilon = SP - Mag$$

$$\frac{dU}{dt} = k_i \cdot \varepsilon(t)$$

$$H = k_s U$$

$$Mag = k_p (H - h)$$

$$\tau_0 = \frac{1}{k_i k_p k_s}$$

Feedback gain optimization in tapping mode AFM

- Minimize Error signal
- Avoid mode hopping
- Avoid Mag signal saturation

• Integral feedback gain optimization: minimization of RMS of MAG:

$$\varepsilon = \frac{\alpha}{k_i} + \beta k_i + \gamma k_i^2 + \delta$$

- Avoid mode switching: setting amplitude so that there is no mode switching, that can be controlled using **Phase** signal
- Avoid **Mag** signal saturation: if saturation happens decrease Set Point; if Set Point is less than 50% of free amplitude adjust speed of scanning

$$\varepsilon[\mathrm{nm}] = V_x \tau_0 \cdot \frac{dH(x)}{dx}$$

Fluoroalkanes $F_{14}H_{20}$ on Si. Left – topography, right – phase contrast Scan size $3.5 \times 3.5 \ \mu$ m

HDPE. Left – topography, right – phase contrast Scan size $2 \times 2 \ \mu m$

PS-b-PMMA. Left – topography, right – phase contrast Scan size $1 \times 1 \ \mu m$

PVDF-sPS. Left – topography, right – phase contrast Scan size 5imes5 μ m

PVDF-sPS. Left – topography, right – phase contrast Scan size 600×600 nm

Setting initial parameters

Setting initial parameters: machine learning

∑ ParamsPicker – □ ×					
Topography, p-p, nm	Roughness	Stiffness	Stickiness	Charge	
<20	Unknown	Unknown	Unknown	Unknown	
20-50					
50-100	Low	Low	Low	Low	
100-250	Mid	Mid	Mid	Mid	
250-500					
>500	High	High	High	High	
Set as Actual					
Set as Initials					

Before experiment

ScanAdjus	—		×	
Scan procedure is over. Please, select the sample features and save adjuster's parameters				
Sample features:				
Roughness:	Mid			~
Stiffness:	Low			~
Stickiness:	High			~
Static charge:	Semicond	uctor		~
Comments:				
tgz 1				
Save XML		Sa	ve Excel M	anual
Save Excel				
Sa	ve	С	ancel	

After experiment

Setting initial parameters: machine learning

	Saving			
	🖹 ScanAdjusterD — 🗆 🗙			Learning
puts> <probe> <id>NSG10< <resonance> <quality>40; <stiffness>1 </stiffness></quality></resonance></id></probe> <sample_featur <unity>un <x_size>4.</x_size></unity></sample_featur 	Scan procedure is over. Please, select the sample features and save adjuster's parameters	>5.0	Bas	ed on the backpropagation
	Roughness: Mid ~	0 Steps 0 t>0.0	(Bro	oyden-Fletcher-Goldfarb-
	Stiffness: Low ~ Stickiness: High ~	1.8	Sila	
	Static charge: Semiconductor ~	 Step> /Default> 0.0	The search f function ma	earch for the minimum of the objective ion makes it possible to find and adjust ptimal synapse weights
	tgz1	B112502 <td>the optimal</td>	the optimal	
<x_points <y_size>4 <y_points <roughnic stiffnes</roughnic </y_points </y_size></x_points 	Save XML Save Excel Manual	70920125112/nade_Height> 31254124/nade_Height> 39132741812/Rough_Height> 39132/82_Mag> 52(perc_Phase> perc_h_Mag> 71857833672(RMS_Height>		
<sticking <static_< th=""><td>Save Cancel</td><td>5 </td><td></td><td>$\mathbf{X} \qquad \mathbf{Z}^{(1)} \qquad \mathbf{A}^{(1)} \qquad \mathbf{Z}^{(2)} \qquad \mathbf{A}^{(2)}$</td></static_<></sticking 	Save Cancel	5		$\mathbf{X} \qquad \mathbf{Z}^{(1)} \qquad \mathbf{A}^{(1)} \qquad \mathbf{Z}^{(2)} \qquad \mathbf{A}^{(2)}$
	"Porc,	25-ric riou - rieghts 25-ric riou - riou 100 - riou - 100 - riou - 1		
		unts /	\ \	

Setting initial parameters: machine learning

Al₂O₃ - "Grater" sample for tips. Left – topography, ScanT – used, right – manual attempt to adjust scanning parameters

Rapid Scan

Fast scanning and High-speed scanning

- "High-speed AFM" is usually referred to videorate AFM, working with the scan speed of 10 – 100 frames per second:
 - Small sample size
 - Topography imaging only
 - Very complex to operate with
 - Small FOV
- "Fast scan AFM is usually referred to
 - Smaller FOW (compare to regular AFM)
 - Scan rates ~ 10 lines per second

Fast scanning

$$f_R = \frac{1}{2\pi} \sqrt{\frac{k}{(M_0 + M_{\rm H})}},$$

k – effective spring constant of the scanner,

 M_0 - effective mass of the scanner,

 $M_{\rm \scriptscriptstyle H}$ - mass of load

Rapid Scan 100

Rapid Scan 100 technology is a combination of mechanical design and high-end digital electronical solutions which allows to speed up your AFM by an order of magnitude keeping 90 um in-plane scaning range.

All three access are equipped with high-precision closed-loop capacitive sensors.

Rapid Scan 100

Rapid Scan 100 technology is a combination of mechanical design and high-end digital electronical solutions which allows to speed up your AFM by an order of magnitude keeping 90 um in-plane scaning range.

All three access are equipped with high-precision closed-loop capacitive sensors.

Parameter	Value
Travel range (XY/Z), μm	90×90×4 ±10%
Closed loop sensors (XYZ)	Capacitive
Sample size, ø mm	15
Vertical noise floor, pm	30
XY position noise (Closed Loop), nm	0,1
Nonlinearity, %	0,1
Resonance Frequency (XY/Z), kHz	0,8/12
Active resonance damping	+

Rapid Scan 100: damping of scanner resonance

- ScanT[™] technology allows to eliminate common AFM artefacts and drastically improve quality of AFM results
- **S** anTTM is I wering si nificantl cantilever consumption for any AFM lab
- Together with ScanT[™], RapidScan[™] technology increase scan rates up to ~ 10 times without compromise with maximum XY visible area

- Dr. Yury Bobrov
- Pavel Vinar
- Andrey Gruzdev
- Dr. Stanislav Leesment

Spring Life Shows

Thank vou!