Определение фрактальной размерности поверхности эпитаксиального *n*-GaAs в локальном пределе

© Н.А. Торхов[¶], В.Г. Божков, И.В. Ивонин^{*}, В.А. Новиков^{*}

ОАО "Научно-исследовательский институт полупроводниковых приборов", 634050 Томск, Россия * Томский государственный университет, 634050 Томск, Россия

(Получена 14 января 2008 г. Принята к печати 29 января 2008 г.)

Исследования методом атомно-силовой микроскопии подготовленных для нанесения барьерного контакта поверхностей эпитаксиального *n*-GaAs показали, что основной рельеф таких поверхностей характеризуется шероховатостью в пределах 3–15 нм, хотя наблюдаются "выбросы" до 30–70 нм. С использованием трех независимых методов определения пространственной размерности поверхности, основанных на фрактальном анализе поверхности (метод триангуляции), контура ее сечения в горизонтальной плоскости и вертикального сечения (профиля поверхности) показано, что рабочая поверхность эпитаксиального *n*-GaAs удовлетворяет всем основным закономерностям поведения фрактальных броуновских поверхностей и в локальном приближении может характеризоваться величиной фрактальных броуновских поверхностей и в локальном приближении может характеризоваться величиной фрактальной размерности D_f , несколько различающейся для различных измерительных масштабов. По результатам наиболее точного метода триангуляции фрактальные размерности исследований поверхности эпитаксиального *n*-GaAs для значений измерительного масштаба от 0.692 до 0.0186 мкм лежат в диапазоне $D_f = 2.490-2.664$. Получены оценки реальной площади поверхности S_{real} эпитаксиальных слоев *n*-GaAs с помощью графического способа в приближении $\delta \rightarrow 0$ (δ — параметр, характеризующий измерительный масштаб). Показано, что ревышать площадь видимого контактного окна.

PACS: 61.43.Hv, 68.35.Ct, 68.37.Ps, 68.47.Fg, 82.45.Mp

1. Введение

Известно, что поверхность полупроводника, а также граница раздела металл-полупроводник не являются плоскими. Практически мы имеем дело с шероховатой поверхностью или границей раздела, рельеф которой может определяться как характером обработки (химикодинамическая, химическая, плазмохимическая, радиационная), так и способом нанесения барьерного металлического контакта (для границы металл-полупроводник). Наличие развитого рельефа поверхности полупроводника может привести к увеличению фактической площади контакта S_{fact}, которая может значительно превышать площадь видимого контактного окна (топологическую площадь) S_W. Последствия этого факта для электрических параметров контакта не всегда очевидны, но прежде чем оценивать их влияние на характеристики приборов, необходимо оценить свойства реальной поверхности с развитым рельефом, в частности площадь такой поверхности.

Трудность численной оценки шероховатости и размера неровностей рельефа поверхности состоит в том, что результат зависит от масштаба проводимых измерений, т.е. от шага сканирования при исследовании поверхности с помощью сканирующей зондовой микроскопии. Ситуация изменяется при использовании так называемого фрактального подхода, инвариантного по отношению к измерительному масштабу [1–6]. Понятие фрактальной (дробной) размерности (D_f) , известное под названием размерности Хаусдорфа–Безинковича $(D_{\rm H})$, было введено Мандельбротом для измерения объектов, получивших название фрактальных [7–9]. Согласно определению Мандельброта, фрактал — это множество, размерность Хаусдорфа-Безинковича которого строго больше его топологической размерности. Известные работы показали, что к числу таких объектов относятся реальные (броуновские) поверхности (на которых неровности распределены броуновским, или случайным, образом) металлических слоев [10-12], полученных различными методами, диэлектрических слоев [11], собственных окислов полупроводников [13], различных кластеров [14]. Есть все основания предполагать, что к их числу относятся и полупроводниковые поверхности, в частности поверхности эпитаксиального *n*-GaAs.

В данной работе с использованием понятия фрактальных броуновских поверхностей исследуется подготовленная к нанесению барьерного контакта поверхность эпитаксиального *n*-GaAs, определяются значение ее фрактальной размерности и реальная площадь.

2. Методика эксперимента

Исследовались структуры $n-n^+$ -GaAs: Sn (100), полученные МОС-гидридной эпитаксией (газофазной эпитаксией из металлоорганических соединений), с толщиной эпитаксиального *n*-слоя 0.5 мкм и концентрацией легирующей примеси $N_D = 5 \cdot 10^{16}$ см⁻³. Структу-

[¶] E-mail: trkf@mail.ru

ры проходили стандартный технологический маршрут обработки, соответствующий подготовке поверхности перед формированием контактов с барьером Шоттки: 1) предварительная химическая очистка путем последовательных обработок в моноэтаноламине (C₂H₇ON), диметилформамиде (C₃H₇ON) и изопропиловом спирте (C_3H_7OH) ; 2) удаление собственных окислов в растворе $H_2SO_4: H_2O = 1:10$ (pH = -0.5) в течение 10 с (декапировка); 3) плазмохимическое осаждение разложением моносилана при температуре $T = 280^{\circ}$ С диэлектрической пленки диоксида кремния SiO2 толщиной $\sim 10\,\mathrm{hm}$ на поверхность слоя n-GaAs; 4) формирование омического контакта со стороны *n*⁺-слоя электрохимическим осаждением сплава AuGe (0.2 мкм) с последующим отжигом в атмосфере водорода в течение 5 мин при температуре 450°С и последующее осаждение слоя золота толщиной 0.2 мкм; 5) фотолитография со стороны диэлектрической пленки SiO₂; 6) удаление пленки SiO₂ в окнах фоторезиста в буферном травителе $(HF:NH_4F:H_2O = 90:690:186 o6\%)$ и финишная обработка (декапировка) поверхности n-GaAs, обычно используемая непосредственно перед осаждением или напылением барьерных контактов.

Исследование рельефа поверхности эпитаксиального n-GaAs проводилось методом атомно-силовой микроскопии (ACM) с использованием микроскопа "Solver-HV" [15-17]. Шаг сканирования определялся выбором линейных размеров области сканирования и используемым числом шагов (256 точек). Измерения морфологических характеристик поверхности проводились на воздухе при нормальных условиях в полуконтактном режиме. Использовались Si-кантилеверы марки NSG10/W2C с токопроводящим покрытием из W₂C толщиной 30 нм, представляющие собой микромеханическое устройство, состоящее из закрепленной на основании кремниевой балки шириной 35 мкм, длиной 60 мкм и толщиной 2 мкм. На свободном конце балки со стороны ее нижней плоскости сформировано острие радиусом r = 35 нм.

Полагая, что исследуемая поверхность *n*-GaAs является фрактальным объектом, мы можем использовать для ее анализа общие представления о фрактальных объектах. Согласно [1–6], фрактальный объект можно охарактеризовать мерой множества M_d элементарных сегментов $h(\delta)$ (элементов, точек), покрывающих (заполняющих) измеряемый объект:

$$M_d = N(\delta)h(\delta) = N(\delta)\gamma(d)\delta^d.$$
 (1)

Здесь $N(\delta)$ — число элементов, необходимое для покрытия (заполнения) объекта;

$$h(\delta) = \gamma(d)\delta^d \tag{2}$$

— некоторая пробная функция, выполняющая роль измерительного масштаба множества; d — топологическая размерность (d = 1 для прямой, d = 2 для плоскости, d = 3 для объема); δ — коэффициент, удовлетворяющий условию $\delta < 1$. Для наших условий измерения с числом шагов санирования, равным 256, $\delta = 1/256$. Величина $\gamma(d)$ равна длине прямой, соединяющей концы измеряемого контура (одномерный случай), либо площади проекции измеряемой поверхности на плоскость (двумерный случай), либо объему, построенному на проекциях боковых поверхностей объема (трехмерный случай). В общем виде $\gamma(d)$ можно представить как $\gamma(d) = A$. Для рассматриваемого нами случая поверхности A равняется S_W — топологической площади окна. В общем случае

$$h(\delta) = A\delta^d. \tag{3}$$

При этом линейная длина измерительного масштаба *l* есть

$$l = \sqrt[d]{A\delta^d} = \delta \sqrt[d]{A}. \tag{4}$$

Как видно, в качестве характеристики измерительного масштаба для заданной площади может быть использован и безразмерный параметр δ .

С другой стороны, число элементов $N(\delta)$, заполняющих измеряемый объект, может быть представлено в виде [6]

$$N(\delta) = \delta^{-D}$$

где *D* — размерность Хаусдорфа–Безинковича (фрактальная размерность). В результате выражение (1) преобразуется к виду

$$M_d = N(\delta)\gamma(d)\delta^d = A\delta^{d-D}.$$
 (5)

Фактически M_d является мерой величины площади поверхности измеряемого фрактального объекта S, и, следовательно, площадь поверхности можно представить в том же виде:

$$S = A\delta^{2-D}.$$
 (6)

Особенностью выражения (5) является то, что при уменьшении измерительного масштаба ($\delta \rightarrow 0$) оно дает два возможных результата для величины M_d , а именно

$$M_d = A\delta^{d-D} \xrightarrow[\delta \to 0]{} \begin{cases} 0 \quad \text{при} \quad d > D, \\ \infty \quad \text{при} \quad d < D. \end{cases}$$
(7)

Это соотношение позволяет дать более строгое определение фрактальной размерности как критической размерности, при которой мера множества M_d изменяет свое значение с 0 на ∞ . При d = D (т.е. при равенстве фрактальной и топологической размерности) значение меры M_d конечно и, как ожидается, равно площади $A = S_W$ для двумерной поверхности (плоскости). Если же реальная поверхность является фрактальным объектом и, следовательно, ее площадь $S > S_W$, то, как следует из (5), фрактальная размерность D > 2.

При проведении фрактального анализа ACM-изображений твердых тел необходимо учитывать их особенности. Известно [1,2,6], что для различных диапазонов измерительного масштаба поверхности твердых тел могут

характеризоваться различными значениями фрактальной размерности. Такие фрактальные объекты называются самоафинными в отличие от самоподобных, для которых характерна одна фрактальная размерность. Найденные таким образом значения фрактальной размерности соответствуют так называемому локальному пределу. В то же время очевидно, что для надежного определения фрактальной размерности необходимо исследовать морфологию поверхности с высоким разрешением, когда шаг сканирования сопоставим с размерами неровностей. В силу специфики реализации АСМ-изображения в наших исследованиях (сохранения числа шагов сканирования независимо от сканируемой площади) это становится возможным при значительном уменьшении сканируемой площади. По мере отклонения от этого условия определяемая фрактальная размерность поверхности уменьшается и стремится к "обычной" (топологической) размерности.

К сказанному нужно добавить, что поверхности реальных физических объектов являются лишь статистически самоафинными. Величина фрактальной размерности может различаться на разных участках поверхности. Можно говорить лишь о среднем значении фрактальной размерности, которое получается путем усреднения фрактальных размерностей, рассчитанных для различных участков поверхности.

Фрактальный анализ поверхности эпитаксиального *n*-GaAs проводился с использованием трех известных способов [1,3,4,6,11], основанных на фрактальном анализе самой поверхности, контура ее сечения в горизонтальной плоскости и вертикального сечения (профиля поверхности). Этим трем способам соответствуют три вида определяемых фрактальных размерностей: фрактальной размерности поверхности D_f , фрактальной размерности контура D_C и фрактальной размерности профиля D_L , связанных между собой соотношением

$$D_C = D_L = D_f - 1. (8)$$

Для определения фрактальной размерности поверхности D_f используется так называемый метод триангуляции [6]. В [11] было показано, что данный метод в отличие от других (от метода контура и метода профиля) обеспечивает большую точность. Вычисление величины D_f методом триангуляции заключается в последовательной аппроксимации поверхности исследуемого участка набором пирамид и измерением площади их боковых поверхностей. На первом шаге вычисления строится одна пирамида на четырех углах поверхности исследуемого (сканируемого) участка с вершиной в центральной точке участка поверхности. Подчеркнем, что координаты всех точек строящейся пирамиды соответствуют координатам точек реальной поверхности участка. На втором шаге участок разбивается на 4 равных квадрата, на которых строятся свои пирамиды и суммируются площади всех боковых поверхностей. На третьем шаге участок разбивается уже на 16 пирамид и

снова находится сумма всех их боковых поверхностей. На следующих этапах разбиения все операции повторяются аналогичным образом. В результате получается набор фактических значений суммарной площади боковой поверхности пирамид S_{fact} в зависимости от длины ребра основания пирамиды l, которая стремится к реальному значению площади S_{real} при $\delta \rightarrow 0$ — (см. (4)). Понятно, что чем мельче δ , тем более плотной сеткой пирамид мы можем покрыть измеряемую поверхность и тем точнее будет значение измеренной площади. Заметим, что указанное выше значение $\delta = 1/256$, характеризующее шаг сканирования, практически соответствует наименьшему значению, которое может быть использовано при программной обработке АСМ-изображений.

Для фрактальной поверхности, согласно (6), определенному значению δ соответствует определенное значение площади поверхности S_{fact} :

$$S_{\text{fact}} = S_W \delta^{2 - D_f}.$$
 (9)

Построив зависимость $\ln S_{\text{fact}}$ от $\ln \delta$, по углу наклона ее линейного участка можно определить величину D_f . Реальная площадь поверхности S_{real} также находится с использованием этой зависимости из условия

$$\ln S_{\text{real}} = \lim_{\delta \to 0} \ln S_{\text{fact}}.$$
 (10)

При фрактальном анализе контура поверхности контурное изображение рельефа поверхности получается сечением рельефа плоскостью, параллельной плоскости образца. В результате в окне сканирования получается изображение (см. далее, разд. 3), состоящее из контуров отдельных неровностей ("островков"), характеризующихся периметром P и площадью S. Для получения достоверности значения фрактальной размерности контура поверхности нужно провести целый ряд измерений S и P при различных значениях δ . Тогда фрактальную размерность D_C можно вычислить с помощью соотношения [11]

$$S(\delta) \propto [P(\delta)]^{2/D_C},$$
 (11)

построив зависимость $\ln(S)$ от $\ln P$ и аппроксимировав ее прямой. Выражение (11) справедливо как для значений *S* отдельных "островков", так и для их суммарной площади. Чтобы получить значение фрактальной размерности, характеризующее поверхность в целом, необходимо усреднить значения фрактальной размерности, полученные для нескольких горизонтальных сечений.

При фрактальном анализе профиля поверхности профиль получается путем сечения поверхности плоскостью, перпендикулярной плоскости образца. В результате получается кривая, описывающая рельеф поверхности с точностью, определяемой величиной измерительного масштаба l (4). Понятно, что изменение величины l ведет к изменению значения измеренной длины этой кривой. В случае фрактальных поверхностей выполняется степенной закон, устанавливающий связь между длиной кривой L и величиной (параметром) измерительного масштаба δ :

$$L(\delta) = L_0 \delta^{1 - D_L},\tag{12}$$

где L_0 — проекция кривой L на ось сечения x, а D_L — фрактальная размерность профиля поверхности. Величина D_L определяется по углу наклона линейного участка зависимости $\ln(L/L_0)$ от $\ln \delta$.

Обработка рельефа исследуемых поверхностей и определение значений D_f осуществлялись с использованием прилагаемого к атомно-силовому микроскопу пакета программ.

3. Результаты исследований

Исследования методом ACM рельефа поверхностей эпитаксиального *n*-GaAs проводились, как указывалось, в окнах фоторезиста после удаления пленки SiO₂ и декапировки поверхности. Выбираемые для сканирования площади квадратных участков соответствовали площадям круглых контактов S_W с диаметрами 5–100 мкм. Это позволяло более наглядно представить ожидаемый эффект увеличения реальной площади контактов, используемых для создания различных приборов.

На рис. 1 приведены результаты измерения фрактальной размерности исследуемых поверхностей триангуляционным методом. Приведены топографические изображения рабочих поверхностей *n*-GaAs, гистограммы распределения неровности Δh иссследуемых поверхностей (здесь же указаны сканируемые площади) и зависимости $\ln(S_{\text{fact}}/S_W)$ от $\ln(1/\delta)$ для расчета фрактальной размерности.

Дополнительные исследования фазового контраста поверхностей показали, что наблюдаемые выступы (светлые островки на изображении) отличаются фазовым составом и образуют специфическую субструктуру, равномерно покрывающую всю поверхность эпитаксиального слоя *n*-GaAs. Высота этих выступов достигает 20–70 нм и лежит за пределами основного рельефа, которому соответствует уровень неровности $\Delta h \approx 3-15$ нм. Встречаются отдельные ямки глубиной до 10 нм и с поперечным размером до 100 нм, которые, по всей вероятности, могут являться порами в пленке собственного окисла на поверхности *n*-GaAs.

Заслуживает внимания статистическое распределение величины Δh основного рельефа поверхности эпитаксиального слоя. Для используемого вида химических обработок для всех исследованных площадей (рис. 1, a-e) статистическое распределение неровностей описывается несколькими функциями Гаусса. При этом в каждом распределении можно выделить доминирующую над остальными составляющую. С увеличением сканируемой площади среднестатистическая величина неровностей (практически соответствующая максимуму распределения доминирующей гауссовой составляющей) также увеличивается с ~ 5 до ~ 12 нм. В данном случае при постоянном разрешении в 256 точек увеличение площади сканируемого окна эквивалентно увеличению измерительного масштаба l (4). Зависимость величины Δh поверхности от величины измерительного масштаба, согласно [6–9], напрямую указывает на фрактальный характер формирования рельефа поверхности в процессе используемых химических обработок.

На зависимостях $\ln(S_{\text{fact}}/S_W)$ от $\ln(1/\delta)$ (рис. 1) обращает на себя внимание наличие двух линейных участков. При этом линейный участок I, соответствующий бо́льшим значениям δ , имеет размерность D_f , близкую к 2, а участок II, для области меньших значений δ , имеет больший наклон и соответственно большую размерность. Видно, что по мере уменьшения сканируемой площади уменьшается протяженность участка I, с одновременным увеличением его наклона. Параллельно растет протяженность участка II, также с одновременным слабым ростом наклона. Проведенные исследования для площадей меньше 4.76² мкм² показали, что излом на зависимости $\ln(S_{\text{fact}}/S_W)$ от $\ln(1/\delta)$ практически исчезает, и она может быть описана одной линейной зависимостью со значением $D_f \ge 2.6$. Слабое изменение величины D_f для различных площадей на участке II отражает статистически самоафинное поведение поверхности n-GaAs.

Исходя из основных особенностей фрактального анализа АСМ-изображений поверхности твердых тел (см. выше) можно сделать вывод, что наблюдаемое поведение величины D_f поверхности n-GaAs является следствием значительного изменения величины δ . Очевидно, что для больших значений δ (превышающих размер неровностей), соответствующих участку І, поверхность оказывается нефрактальной, т.е. плоской. Иначе говоря, ее фрактальная размерность равна топологической: $D_f \approx 2$. Напротив, линейный участок II с малыми значениями δ соответствует фрактальной поверхности. Значение, соответствующее излому на зависимостях $\ln(S_{\text{fact}}/S_W)$ от $\ln(1/\delta)$, может быть интерпретировано как некий верхний предел для определения значения фрактальной размерности. Оценка значения δ для рис. 1, *d* дает $\delta = 0.0297$, что соответствует, согласно (4), измерительному масштабу 1.3 мкм. Область меньших значений δ , где поверхность ведет себя как фрактальный объект, соответствует так называемому локальному приближению (пределу) в определении фрактальной размерности, тогда как для области больших значений δ можно говорить условно о глобальном приближении (пределе) в определении размерности поверхности. Как уже говорилось, этой ситуации соответствует размерность поверхности, близкая к 2, т.е. топологическая размерность.

На рис. 2 приведены результаты определения фрактальной размерности поверхности из анализа контура ее сечения в горизонтальной плоскости. На рис. 2, a-eслева представлены контурные изображения горизонтальных сечений рельефов рабочих поверхностей, представленных на рис. 1. Светлые островки соответствуют

Рис. 1. АСМ-изображения участков рабочих поверхностей эпитаксиального *n*-GaAs, статистическое распределение величины Δh (точки — эксперимент, пунктир — функции Гаусса, сплошная линия — огибающая функций Гаусса), зависимости $\ln(S_{\text{fact}}/S_W)$ от $\ln(1/\delta)$ для определения фрактальных размерностей методом триангуляции. (*a*-*e*) — различные площади *S*_W (указаны).

43

Рис. 2. Контурные ACM-изображения неровностей рельефа поверхностей эпитаксиального *n*-GaAs с различными площадями и зависимости $\ln(S)$ от $\ln(P)$ для определения фрактальных размерностей методом горизонтальных сечений (S — суммарная площадь сечений неровностей рельефа, P — суммарное значение периметров контуров горизонтальных сечений неровностей). (a-e) — различные площади S_W (указаны).

Физика и техника полупроводников, 2009, том 43, вып. 1

Рис. 3. Профили вертикальных сечений АСМ-изображений рельефов поверхностей (соответствуют штриховым линиям на изображениях рис. 1) и зависимости $\ln(L/L_0)$ от $\ln(1/\delta)$ для определения фрактальных размерностей.

Физика и техника полупроводников, 2009, том 43, вып. 1

сечениям отдельных неровностей. Их можно характеризовать площадью контура или некоторым эффективным диаметром а. Хорошо видно, что по мере увеличения измерительного масштаба l (с ростом сканируемой площади, (4)) от *a* к *e* меняется и характер контурного изображения — более мелкие неровности сливаются в более крупные, а те, в свою очередь, сливаясь, образуют волнообразный основной рельеф поверхности эпитаксиального n-GaAs. При этом формирующие рельеф неровности распределены по поверхности не равномерно, а собраны в скопления, как это особенно хорошо видно на рис. 2, c, d. Таким образом, поведение величины a в зависимости от параметра l для различных увеличений оказывается сложным, так как описывает не только горизонтальный размер каких-либо локальных объектов (например, различных одиночных выступов), но и некий средний горизонтальный размер колебаний основного рельефа поверхности (скоплений неровностей), который хорошо просматривается на поперечных сечениях рельефа больших площадей (рис. 2, *с*–*е*). Для площадей 44.31² и 88.62² мкм² поперечные размеры колебаний основного рельефа могут достигать десятков микрометров.

На рис. 2, а-е справа приведены результаты фрактального анализа контурных изображений с использованием выражения (11). Исходя из полученных значений величины D_C можно заключить, что фрактальный анализ контура поверхности является менее точным методом определения фрактальной размерности поверхности. Как видно, все зависимости $\ln S$ от $\ln P$ характеризуются только одним линейным участком. При этом для площадей $26.59^2 - 88.62^2$ мкм² (рис. 2, *c*-*e*) величина D_C принимает значение, близкое к 1, что, согласно (6), соответствует значению фрактальной размерности поверхности $D_f = D_C + 1 = 2$. Это свидетельствует о том, что для данных значений измерительного масштаба мы находимся в области глобального приближения, когда величина фрактальной размерности совпадает с топологической. С уменьшением измерительного масштаба (уменьшением площади сканируемого окна согласно (4)) наблюдается увеличение размерности поверхности, и только для самой малой площади (в области реализации локального приближения) найденное значение D_C дает значение фрактальной размерности поверхности, близкое к найденному методом триангуляции: $D_f = D_C + 1 = (2.7 \pm 0.1).$

Наконец, на рис. 3 представлены результаты определения фрактальной размерности поверхности из анализа профиля поверхности. На рис. 3, *а*-*е* слева приведены контуры вертикальных поперечных сечений рельефа поверхности эпитаксиального *n*-GaAs. Эти сечения соответствуют штриховым линиям на изображениях поверхности на рис. 1. Поведение рельефа также соответствует описанию к рис. 1. Отдельные пики рельефа достигают высоты более 30 нм, но основной рельеф лежит в пределах 3–15 нм.

На рис. 3, *а*-*е* справа показаны усредненные по пяти профилям результаты фрактального анализа вертикаль-

Рис. 4. Зависимости S_{fact}/S_W от параметра измерительного масштаба δ для разных участков поверхностей эпитаксиального *n*-GaAs (рост номера соответствует уменьшению сканируемой площади): точки — эксперимент, сплошные кривые — аппроксимация.

ных профилей поверхности. На зависимостях $\ln(L/L_0)$ от $\ln(1/\delta)$ для случаев, представленных на рис. 3, b-e, имеются изломы, определяющие верхнюю границу локального приближения. При этом в области локального приближения (малых δ) наблюдается вполне удовлетворительное, согласно (8), соответствие значений D_L и $D_f: D_f = D_L + 1$. Для профиля поверхности, соответствующего рис. 3, a (наименьшие значения измерительного масштаба), величина $D_f = D_L + 1 = (2.627 \pm 0.07)$ наиболее точно совпадает с величиной, определенной методом триангуляции, $D_f = (2.664 \pm 0.01)$. Следует отметить, что, несмотря на достаточно хорошее совпадение, точность данного метода зависит от выбора профиля вертикального сечения и поэтому уступает методу триангуляции.

Таким образом, в результате проведенных исследований можно заключить, что используемые в работе химические обработки поверхности эпитаксиального *n*-GaAs приводят к формированию самоафинного рельефа поверхности, характеризующегося в локальном пределе набором значений фрактальной размерности. Диапазон этих значений для исследуемого диапазона значений измерительного масштаба невелик, и в принципе для всего диапазона значений δ (там, где можно использовать локальное приближение) можно ввести статистическое значение фрактальной размерности поверхности.

Согласно (9), мы имеем также возможность оценить реальную площадь поверхности *n*-GaAs, устремив параметр δ к нулю. На практике бесконечно уменьшать значение δ невозможно (как указывалось, величина ограничивается значением $\delta = 1/256$). Преодолеть трудность можно с использованием графического метода. Для этого экспериментальные зависимости S_{fact}/S_W от параметра δ для каждой из исследуемых площадей аппроксимируются функциями $F(\delta) = S_{\text{fact}}/S_W$ (рис. 4,

N₂	a_W , мкм (20°С)	S_W , мкм ²	$S_{\rm fact}, $ мкм 2	<i>l</i> , мкм	D_{f}	S_{real} , мкм ²
1	100	7853.98	14685.88	0.346	2.501	66436.82
2	50	1963.50	5526.48	0.173	2.536	25843.59
3	30	706.86	2689.31	0.104	2.573	14836.28
4	15	176.71	1012.00	0.052	2.661	4454.51
5	5	19.63	214.97	0.0186	2.664	802.55

Параметры поверхностей, приготовленных для создания контактов

сплошные кривые):

$$F(\delta) = 1.049 + 7.410 \exp\left(\frac{-\delta}{0.00212}\right),$$
 (13)

$$F(\delta) = 1.360 + 11.802 \exp\left(\frac{-\delta}{0.00189}\right),$$
 (14)

$$F(\delta) = 1.474 + 19.515 \exp\left(\frac{-\delta}{0.00174}\right),$$
 (15)

$$F(\delta) = 4.208 + 21.000 \exp\left(\frac{-\delta}{0.00176}\right),$$
 (16)

$$F(\delta) = 3.727 + 37.157 \exp\left(\frac{-\delta}{0.00189}\right).$$
 (17)

Возрастающая нумерация на рис. 4 соответствует уменьшению сканируемой площади (уменьшению измерительного масштаба). Видно, что экспериментальные значения хорошо описываются экспоненциальной зависимостью. Подставив $\delta = 0$ в выражения (13)–(17), получим значения функций F(0), а приравнивая их отношению S_{real}/S_W при известном значении S_W , получим величину реальной площади поверхности S_{real} .

В таблице суммированы данные, характеризующие поверхности, подготовленные для создания контактов. Они включают топологическую площадь контакта S_W (соответствующую диаметру окна a_W), фактическую площадь поверхности S_{fact} , соответствующую минимальному измерительному масштабу l ($\delta = 1/256$), фрактальную размерность поверхности D_f , определенную методом триангуляции, и, наконец, величину реальной поверхности S_{real} . Нетрудно убедиться, что реальная поверхность значительно превосходит топологическую. Особенно ярко это проявляется на малых площадях контакта, где точность определения реальной поверхности (в силу минимального шага сканирования) максимальна.

4. Заключение

Исследования подготовленных для нанесения барьерного контакта поверхностей эпитаксиального *n*-GaAs методом атомно-силовой микроскопии показали, что поверхности имеют развитый рельеф и являются фрактальными объектами. Определены различными методами фрактальные размерности поверхностей *n*-GaAs в локальном приближении, которые дают близкие результаты. Типичный верхний предел локальности составляет $\sim 1.3\,{\rm MKM}.$

Предложен метод определения реальных площадей поверхностного рельефа эпитаксиальных слоев *n*-GaAs. Показано, что реальная площадь поверхности эпитаксиального *n*-GaAs может на порядок и более превышать площадь видимого контактного окна.

Список литературы

- [1] Б. Мандельброт. *Фрактальная геометрия природы* (М., Институт компьютерных исследований, 2002) с. 656.
- [2] F. Family, T. Vicsek. *Dynamics of Fractal Surfaces* (World Scientific, Singapore, 1991) c. 376.
- [3] А.Д. Морозов. Введение в теорию фракталов (Москва-Ижевск, НИЦ "Регулярная и хаотическая динамика", 2001) с. 128.
- [4] П.А. Арутюнов, А.Л. Толстихина, В.Н. Демидов. Завод. лаб., 65 (9), 27 (1999).
- 5] S. Talibuddin, J.P. Runt. J. Appl. Phys., 76 (9), 5070 (1994).
- [6] Е. Федер. Фракталы (М., Мир, 1991).
- [7] B.B. Mandelbrot. Fractals: Form, Chance, and Dimension (W.H. Freeman, San Francisco, 1977).
- [8] Б.Б. Мандельброт. Фракталы в физике (М., Мир, 1988)
 с. 9.
- [9] B.B. Mandelbrot. Encyclopedia of physical science and technology, 5, 579 (1987).
- [10] M. Matsushita, M. Sano, Y. Hayakawa, H. Honjo, Y. Sawada. Phys. Rev. Lett., 53, 286 (1984).
- [11] А.В. Панин, А.Р. Шугуров. Поверхность, № 6, 64 (2003).
- [12] C. Douketis, Z. Wang, T.L. Haslett, M. Moskovits. Phys. Rev. B, 51 (16), 11 022 (1995).
- [13] Н.А. Торхов. ФТП, **37** (10), 1205 (2003).
- [14] P. Meakin. Phys. Rev. A, 27, 1495 (1983).
- [15] В.Л. Миронов. Основы сканирующей зондовой микроскопии (Нижний Новгород, Ин-т физики микроструктур РАН, 2004) с. 111.
- [16] www.ntmdt-tips.com
- [17] www.ntmdt.com

Редактор Л.В. Шаронова

Determination of fractal dimension of the surface of epitaxial *n*-GaAs in a local limit

N.A. Torkhov, V.G. Bozhkov, I.V. Ivonin*, V.A. Novikov*

Scientific-Research Institute of Semiconductor Devices, 634050 Tomsk, Russia * Tomsk State University, 634050 Tomsk, Russia

Abstract Surface of epitaxial n-GaAs prepared for barrier contact deposition is studied by atomic force microscopy. The surface relief is characterized by roughness of 3-15 nm with overshots up to 30-70 nm. Using three independent methods for determination of the surface spatial dimension based on the fractal analyzis of the surface (triangulation method) and boundaries of the horizontal and vertical cross-sections (surface profile), it is shown that the working surface of epitaxial n-GaAs obeys the regularities of fractal Brownian surfaces. In a local approximation, it can be characterized by the dimension D_f different for different measurement scales. The results of the most exact triangulation method show that the fractal dimensions of the surface of epitaxial *n*-GaAs are $D_f = 2.490 - 2.664$ for the measurement scale from 0.692 to $0.0186 \,\mu\text{m}$. Real surface S_{real} of epitaxial *n*-GaAs is estimated by a graphical method in the $\delta \rightarrow 0$ approximation (δ measurement scale parameter). It is shown that the real area of the surface of epitaxial n-GaAs can considerably exceed (by an order of magnitude or more) the area of a visible contact window.