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A New Scanning Method for Fast Atomic Force Microscopy
I. A. Mahmood, S. O. R. Moheimani and B. Bhikkaji

Abstract—In recent years, the Atomic Force Microscope (AFM)
has become an important tool in nanotechnology research. It was
first conceived to generate 3D images of conducting as well as
nonconducting surfaces with a high degree of accuracy. Presently,
it is also being used in applications that involve manipulation of
material surfaces at a nanoscale. In this paper we describe a
new scanning method for fast atomic force microscopy. In this
technique, the sample is scanned in a spiral pattern instead of
the well established raster pattern. A Constant Angular Velocity
(CAV) spiral scan can be produced by applying single frequency
cosine and sine signals with slowly varying amplitudes to the
x-axis and y-axis of AFM nanopositioner respectively. The use
of single frequency input signals allows the scanner to move
at high speeds without exciting the mechanical resonance of
the device. Alternatively, the frequency of the sinusoidal set-
points can be varied to maintain a constant linear velocity
while a spiral trajectory is being traced. Thus, producing a
Constant Linear Velocity (CLV) spiral. These scan methods can
be incorporated into most modern AFMs with minimal effort
since they can be implemented in software using the existing
hardware. Experimental results obtained by implementing the
method on a commercial AFM indicate that high-quality images
can be generated at scan frequencies well beyond the raster scans.

I. I NTRODUCTION

Atomic Force Microscope (AFM) [1], [2] has emerged
as a standard tool in nanotechnology research. The working
principle of the AFM is based on the use of interactive forces
between a tip and a sample surface to sense the proximity
of the tip to the sample [3]. The AFM can be used either
in contact or noncontact mode. In contact mode, a micro-
cantilever with a very sharp tip is brought in contact with
the surface of the sample. In this mode, the repulsive force
acting on the tip causes the micro-cantilever to deflect. The
deflection of the cantilever is often measured using a beam-
deflection method [2]. In this technique, as illustrated in Fig.
1, a laser beam is reflected at the rear side of the cantilever
and the deflection is measured by a photodetector. In contact
mode, the interactive forces are determined by measuring the
deflection of the cantilever.

In noncontact mode the cantilever is made to oscillate. The
tip of the cantilever is brought close to, but without coming
in contact with, the surface of the sample. AFM images with
atomic resolution can be achieved by operating this mode in
ultra-high vacuum (UHV), where the distance between the tip
and the sample can be made very small [3]. In this mode,
the oscillation of the cantilever is affected by attractiveforces
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present between the tip and the sample surface. In noncon-
tact mode, the interactive forces are measured by measuring
changes in oscillation amplitude or resonance frequency ofthe
cantilever. In both modes, the interactive force measurements
can be used directly to generate the sample surface topography
or as a feedback signal to thez-axis controller to keep the
interactive force nearly constant.

Today, the majority of commercially available AFMs use
raster scans to image a sample’s surface. A piezoelectric tube
scanner is often used to move the sample or the probe in thex,
y andz directions [4]. Although flexure-based nanopositioners
[5], [6] have emerged as an alternative to piezoelectric tubes,
the latter is still the most widely used nanopositioning technol-
ogy in AFMs. A raster scan is normally attained by applying a
triangular waveform to the fast axis (x-axis) and a staircase, or
a very slow ramp signal to the slow axis (y-axis) of the scanner.
In order to perform a high-speed raster scan, a high frequency
triangular waveform needs to be used. A triangular waveform
contains all odd harmonics of the fundamental frequency.
The amplitudes of these harmonic signals attenuate as 1/n2,
with n being the harmonic number [7]. If a fast triangular
waveform is applied to the scanner, it will inevitably excite
the mechanical resonance of the device. Consequently, this
causes the scanner to vibrate and trace a distorted triangular
waveform along thex-axis which can significantly distort
the generated AFM image. To avoid this complication, the
scanning speed of AFMs is often limited to about 10 - 100
times lower then the scanner’s first resonance frequency. Apart
from these vibrations, the accuracy of the AFM images are also
affected by a number of nonlinear properties that are inherent
to piezoelectric material including hysteresis, creep anddrift
[8], [9].

A widely used approach to deal with these issues is to use
feedback control techniques to track the triangular waveform.
One of the earliest attempts is reported in [10], where Lag-
lead andH∞ controllers were designed and implemented on
the piezoelectric tube scanner, and the feasibility of reducing
the adverse effects of creep and hysteresis were demonstrated.
The authors also reported that theH∞ controller achieved
damping of high-frequency vibrations. In [11], loop shaping
techniques were used to design a feedback controller for
a piezoelectric tube scanner to track a raster pattern. The
closed-loop system was implemented on an AFM and their
results show that accurate positioning with a high degree of
repeatability is achievable with the use of feedback control. In
[12], a proportional-plus-derivative(PD) high-gain feedback
controller and a feedforward input were used to compensate
for creep, hysteresis, and vibration effects in an AFM piezoac-
tuator system. The high-gain feedback controller was first
used to linearize the piezoactuator by compensating for the
creep and hysteresis. Then, the linearized piezoactuator was
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Figure 1. Basic AFM schematic with feedback controllers.

modeled to determine the feedforward input to account for the
vibration effects. Their results indicated that the inclusion of
feedforward input reduces the tracking error more as compared
to using only feedback control. Other examples of successful
applications of feedback control techniques include [13]–
[17]. An exhaustive review of the literature can be found in
reference [9].

The use of feedback controllers in damping and linearizing
the piezoelectric tube scanner has been shown to be suc-
cessful in the above mentioned works [10]–[17]. However,
these feedback controllers have little success in trackinghigh
frequency triangular waveforms. Closed-loop tracking of these
waveforms typically results in the corners of the triangular
waveform to be rounded off. This is due to the presence
of high frequency harmonics that are inevitably outside of
the bandwidth of the closed-loop system. Consequently, AFM
images generated at high speeds often demonstrate significant
distortions especially around the edges of the image.

This paper proposes a new scan technique for fast atomic
force microscopy by forcing the scanner to follow a spiral
trajectory over the surface that is to be imaged. A constant an-
gular velocity (CAV) spiral scan can be produced by applying
slowly varying-amplitude single frequency sinusoidal signals
to the x- and y-axes of the piezoelectric tube scanner. The use
of the single frequency input signals allows for scanning tobe
performed at very high speeds without exciting the resonance
of the scanner and with relatively small control efforts. An
alternative method is to generate the spiral pattern in a constant
linear velocity (CLV) approach. The latter method has been
implemented in some disk storage devices, such as Compact
Disk-Read Only Memory (CD-ROM) where the information
is stored in a continuous spiral track over the disk’s surface
[18]. The proposed method is an alternative to raster-based
sinusoidal scan methods that are used to achieve fast scans in
e.g., scanning near-field optical microscopy (SNOM) [19]. In
spiral scanning, both axes follow sinusoidal signals of identical
frequencies resulting in a smooth trajectory. This avoids the
transient behavior that may occur in sinusoidal scans as the
probe moves from one line to the next. Furthermore, the
proposed method does not require specialized hardware, e.g.

a tuning fork actuator, and can be implemented on a standard
AFM with minor software modifications.

It should be noted that recently a few prototype laboratory
AFMs have been developed that are capable of imaging a
sample at, or close to, video-rates, [20]–[23]. Such a func-
tionality is particularly useful in a number of applications, e.g.
when capturing the dynamic behavior of certain biomolecular
processes is needed. In order to achieve video rates, using a
raster scanned AFM, the scan frequency has to be quite high,
close to 5 kHz or higher. The spiral scanning method proposed
in this paper may be a good candidate for such applications.
This scheme can be easily implemented on a commercial,
or prototype AFM, with minimal software modifications. It
should be pointed out that to operate an AFM at such high scan
frequencies one has to overcome other technical challenges,
such as the need to utilize very small micro-cantilevers with
extremely high resonance frequencies [20].

The remainder of this paper is organized as follows. The
generation of input signals to produce the spiral pattern isde-
scribed in detail in Section II. Section III provides descriptions
of the AFM and other experimental setups used in this work.
Modeling and identification of the system transfer functions
are presented in Section IV. Control schemes for the AFM
scanner are devised in Section V. In Section VI experimental
results are presented to illustrate the drastic improvement in
imaging speed that can be achieved with the proposed new
scan trajectory. Finally, Section VII concludes the paper.

II. SPIRAL SCAN

This section deals with the generation of input signals that
are needed to move the AFM scanner in a spiral pattern,
illustrated in Fig. 2. The pattern is known as the Archimedean
spiral. A property of this spiral is that its pitchP, which is
distance between two consecutive intersections of the spiral
curve with any line passing through the origin, is constant
[24]. Depending on how this trajectory is traced, the shape is
referred to as either a Constant Angular Velocity (CAV) spiral,
or a Constant Linear Velocity (CLV) spiral. In the former case,
the pattern is traced at a constant angular velocity, while in
the latter at a constant linear velocity.

A. The CAV spiral

The equation that generates a CAV spiral of pitchP at
an angular velocity ofω can be derived from a differential
equation given in [18] as

dr
dt

=
Pω
2π

(1)

wherer is the instantaneous radius at timet. Equation (1) is
solved forr by integrating both sides to obtain

∫
dr =

Pω
2π

∫
dt. (2)

For r = 0 at t = 0,

r =
P
2π

ωt. (3)

Here,P is calculated as

P =
spiral radius×2

number o f curves−1
(4)
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Figure 2. Spiral scan of 6µm radius withnumber o f curve= 8.

where number o f curvesis defined as the number of times
the spiral curve crosses through the liney = 0. This is
exemplified in Fig. 2 where the crossing points are numbered.
The figure illustrates a spiral scan of 6µm radius with
number o f curves= 8.

The equation that describes the total scanning timettotal as-
sociated with a CAV spiral scan can be derived by integrating
both sides of equation (1) as

rend∫

rstart

dr =
Pω
2π

tend∫

tstart

dt (5)

where rstart and rend are initial and final values of the spiral
radius, andtstart and tend are initial and final values of the
scanning time. From equation (5), ifrstart = 0 at tstart = 0 and
ttotal = tend− tstart, we obtain

ttotal =
2πrend

Pω
. (6)

In order to implement the spiral scans using a piezoelectric
tube scanner, equation (3) needs to be translated into cartesian
coordinates. The transformed equations are

xs = r cosθ (7)

and
ys = r sinθ (8)

wherexs andys are input signals to be applied to the scanner in
thex andy axes respectively andθ is the angle. Fromω = dθ

dt ,
θ is obtained asθ = ωt. An example of input signalsxs and
ys that can generate the spiral in Fig. 2 is plotted in Fig. 3.
The figure illustrates constant phase errors between the input
signals and measured outputs. Such errors are due to the non-
ideal frequency response of the controlled nanopositioner. For
a CAV spiral, these phase errors can be easily eliminated by
adding phase constantsαx and αy to shape the input signals
as

Xs = r cos(θ +αx) (9)

and
Ys = r sin(θ +αy) . (10)

0 0.04 0.08 0.12
 6

 3

0

3

6

0 0.04 0.08 0.12
 6

 3

0

3

6

x
s

(µ
m

)
y

s
(µ

m
)

t (s)

t (s)

(a)

(b)

Figure 3. Input signals to be applied to the scanner in the x and y axes of
the scanner to generate CAV spiral scan withω = 188.50 radians/sec. Solid
line is the achieved response and dashed line is the desired trajectory.

Here,αx andαy are determined by measuring the closed-loop
frequency response of the system at the scan frequency. They
may also be determined off-line if a model of the system is
at hand.

A key advantage of using a CAV spiral is that closed-loop
tracking of this pattern when implemented via the cartesian
equations only involves tracking single frequency sinusoidal
signals with slowly varying amplitudes. This advantage, when
combined with the use of the shaped input signals (9) and (10),
enables the AFM’s scanner to track a high frequency CAV
spiral resulting in fast atomic force microscopy. A drawback
of this method is that its linear velocityv is not constant. Thus,
it may not be suitable for scanning some samples where the
interaction between the probe and the sample needs to be done
at linear velocity. The CLV spiral presented next overcomes
this problem.

B. The CLV spiral

In order to generate a CLV spiral, the radiusr̃ and angular
velocity ω̃ need to be varied simultaneously in a way that
the linear velocity of the nanopositioner is kept constant at
all times. The expressions for̃r and ω̃ are first derived by
substitutingω = v

r into equation (1) to obtain

dr
dt

=
Pv
2πr

(11)

wherev is the linear velocity of the CLV spiral. Then, equation
(11) is solved forr by integrating both sides of the equation
as ∫

rdr =
Pv
2π

∫
dt. (12)

For r = 0 at t = 0, we obtain

r̃ =

√
Pv
π

t. (13)

From equation (13), by substituting̃r = v
ω̃ the expression for

ω̃ is obtained as

ω̃ =

√
πv
Pt

. (14)
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It is worth noting that̃r andω̃ are non-linear functions of time,
andω̃ approaches infinity att = 0. For practical reasons during
digital implementation of the CLV spiral,t = 0 is approximated
with t = sampling periodof the digital system.

The equation for total scanning timẽttotal of a CLV spiral
scan can be derived in a similar manner to the CAV spiral.
From equation (11),̃ttotal is derived as

t̃total =
πr2

end

Pv
. (15)

By choosingv = ω̃endrend where ω̃end is the instantaneous
angular velocity atrend, the equation for̃ttotal can be rewritten
as

t̃total =
πrend

Pω̃end
. (16)

It can be inferred from equation (16) that if̃ωend= ω, the total
scanning time of a CLV spiral is half of the total scanning time
of a CAV spiral. This makes the CLV spiral a more attractive
option. However, as we will see later, this gain in scanning
time comes at the expense of introducing distortion at the
center of the AFM image.

Similar to the CAV spiral, equation (13) can be described
in cartesian coordinates as

x̃s = r̃ cosθ̃ (17)

and
ỹs = r̃ sinθ̃ (18)

whereθ̃ for time varyingω̃ is obtained as

θ̃ =

√
4πv
P

t. (19)

Fig. 4 illustrates the input signals̃xs andỹs that can be used to
generate a spiral similar to the one shown in Fig. 2. However,
as illustrated in the figure, the input signals are implemented
in a reversed order, that is fromrend to rstart. To generate a
CLV spiral, that starts from̃r = 0, one requires a closed-loop
system with extremely high bandwidth (ideally∞ bandwidth)
and a closed loop system with a flat phase and magnitude
response. This of course, is not practical. Thus, if the spiral is
started from̃r = 0, the initial error that is inevitably generated
will propagate all the way through to the end. In the next
section, we propose an inversion algorithm that can minimize
the tracking error arising from the limited bandwidth and non-
ideal frequency response of the closed loop system.

C. Inversion Technique for CLV spiral

In this section a technique to shape inputs such that the
resulting trajectory will be a CLV spiral with minimal tracking
error is presented. As the implementation of the entire scheme
will be in discrete time, the input shaping method presented
here is also described in discrete time.

The goal is to design input signals{ux[k]}N
k=0 and{

uy[k]
}N

k=0 such that their outputs, along thex andy axes are,
{x[k] = x̃(kT)}N

k=0 and {y[k] = ỹ(kT)}N
k=0 respectively. Here,

T denotes the sampling interval and ˜x and ỹ are as defined
in equations (17) and (18). In the following only designing
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Figure 4. Input signals to be applied to the scanner in the x and y axes of
the scanner to generate CLV spiral scan withv = 1.13 mm/sec (orω̃end =
188.50 radians/sec). Solid line is the achieved response and dashed line is the
desired trajectory.

of {ux[k]}N
k=0 will be described, with the understanding that{

uy[k]
}N

k=0 can be generated by adopting the same procedure.
Assume that the transfer function relating the input and the

output along thex direction is given by

Gx(z) =
b0 +b1z−1 +b2z−2 + . . .+bmz−m

1+a1z−1 +a2z−2 + . . .+amz−m , (20)

which is stable but has non-minimum phase zeros, i.e. all of
zeros are outside the unit circle. AsGx(z) is non-minimum
phase, a direct inversion is not possible. Furthermore, as ˜x
and ỹ are not periodic, a frequency domain inversion of the
type presented in [15] will not be accurate.

Note that equation (20) in the discrete time corresponds to
the difference equation

x[n]+a1x[n−1]+ . . .+amx[n−m]

= b0ux[n]+b1ux[n−1]+ . . .+bmux[n−m]. (21)

This implies

ux[n−m] =
1

bm
(x[n]+a1x[n−1]+ . . .+amx[n−m]

−bnux[n]− . . .−bm−1ux[n− (m−1)]) . (22)

As {x[k]}N
k=0 is given, assuming arbitrary values for

ux[N],ux[N−1], . . . ,ux[N−(m−1)], the input sequenceux[N−
(m−1)],ux[N−(m−2)], . . . ,ux[1],ux[0] can be calculated from
equation (22). As an example considerm = 2 in (21). This
implies

x[n]+a1x[n−1]+a2x[n−2]

= b0ux[n]+b1ux[n−1]+b2ux[n−2] (23)

and

ux[n−2] =
1
b2

(x[n]+a1x[n−1]

+a2x[n−2]−b0ux[n]−b1ux[n−1]) . (24)
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Setting ux[N] and ux[N − 1] to arbitrary values,ux[N − 2]
can be back calculated from equation (24). Similarly, using
the calculatedux[N−2] and the arbitrarily chosenux[N−1],
ux[N−3] can be computed. Thus, traversing backwards in time
one can computeux[n] up to n = 0.

The above mentioned procedure can be proved to be stable,
and can be shown to converge to an input sequence that would
generate the output ˜x(kT). However, the proof is beyond the
scope of this paper. If a user has to deal with a continuous
time transfer functionGx(s), he or she could approximate
it by a discrete transfer functionGx(z) using the bilinear
transformation or any other approximation technique.

D. Total scan time: Spiral scan vs. Raster scan

A fair comparison of the total scanning time for spiral and
raster scans can be made by evaluating the time required for
both methods to generate images of equal areas and pitch
lengths. The area of a circular spiral scanned imageAspiral

with a radius ofrend can be calculated as

Aspiral = πr2
end. (25)

The area of a rectangular raster scanned imageAraster can be
calculated using

Araster = L2 (26)

whereL is length of the square image. For both images to have
an equal area, equations (25) and (26) are equated to obtain

L =
√

πrend. (27)

The number of lines in a raster scanned image with pitchP
can be calculated as

number o f lines=
L
P

+1. (28)

The total scan time to generate a raster scanned image can be
obtained using

ttotal raster=
number o f lines

f
(29)

where f is the scan frequency. Thus, by substituting equations
(27) and (28) into equation (29), the total scan time for
generating a raster scanned image with an area ofπr2

end can
be determined as

ttotal raster=

√
πrend

P f
+

1
f
. (30)

The total scanning time to generate a spiral scanned image
in a CAV mode can be calculated using equation (6) and by
substitutingω = 2π f into equation (6),

ttotal =
rend

P f
. (31)

It can be deduced from equations (30) and (31), by ignoring
the term 1

f in equation (30), for the same scan frequency, an
image of equal area and pitch can be generated

√
π (≈ 1.77)

times faster using a CAV spiral scan than a raster scan.

In order to compare the total scanning time for a CLV spiral
scan and a raster scan, the linear velocity of the raster scan
vr = 2L f is introduced into equation (30) to obtained

ttotal raster=
2πr2

end

Pvr
(32)

with the term 1
f ignored. It can be deduced from equations

(32) and (15), for the same linear velocity,vr = v, an image
of equal area and pitch can be generated two times faster using
a CLV spiral scan than a raster scan.

E. Total trajectory distance : Spiral scan vs. Raster scan

In this section, total trajectory distance in generating images
of equal area and pitch length using spiral and raster scans are
compared. The total trajectory distance of a spiral scansspiral

can be derived from equation (15) as

sspiral =
πr2

end

P
. (33)

Note that, (33) also holds for a CAV spiral scan.
The total trajectory of a raster scansraster can be written as

sraster = 2L×number o f lines. (34)

By substituting equations (28) and (27) into equation (34),
sraster can be obtained as

sraster =
2πr2

end

P
+2

√
πrend. (35)

It can be deduced from equation (35) and (33) that,sraster is
at least two times longer thansspiral. An immediate advantage
of this is that, there will be less wear on the AFM tip when
the spiral scan is used instead of the raster scan.

F. Mapping Spiral Points to Raster Points

In this work, the spiral-scanned images are plotted by
mapping the sampling points along the spiral trajectory (called
“spiral points”) to points or pixels (called “raster points”) that
make up a raster-scanned image placed on top of the spiral
points as shown in Fig. 5 (a) and (b) for CAV and CLV spirals
respectively. A major advantage of mapping the spiral points
to the raster points is that it allows the user to utilize existing
image processing software developed specifically for raster-
scanned images, to plot the generated spiral image.

In this mapping procedure, the dimension of the raster-
scanned image is set tospiral diameter× spiral diameter
where thespiral diameter≈ spiral radius×2, and the pitch
of the raster-scanned image is chosen to be equal to the
pitch P of the spiral. Consequently, the number of lines in
the raster-scanned image will be equal to the number of
curves in the spiral trajectory. Then, each raster point located
within the spiral radius is mapped to the nearest spiral point.
Since position of the raster and spiral points are known for
any scan frequency and dimension, the nearest spiral point
corresponding to each raster point can be identified and stored
in an indexed matrix before performing the sample scans. By
doing this, the image of the sample can be plotted in real-time,
i.e., as the AFM is scanning the sample.
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Figure 5. Spiral points (+) for (a) CAV spiral withωs = 188.5 radians/s
and (b) CLV spiral withvs = 1.1 mm/s. The sampling frequency used for
generating these spiral points is 2 kHz. Both spiral trajectories have a 6.5µm
radius withnumber o f curves= 8. The spiral points are plotted on top of the
raster points (.) that make up a 13× 13 µm raster-scanned image with of
8 × 8 pixels resolution.

Fig. 5 (a) illustrates that the density of the CAV spiral
points increases asr approaches the origin of the spiral. This
is because the time taken for the spiral trajectory to make
one full spiral circle remains constant due to the constant
angular velocity, although the circumference of the spiralcircle
gets smaller. A disadvantage of this is that, it increases the
computing time needed to search for the nearest spiral point
corresponding to each raster point. Nevertheless, Fig. 5 (b)
shows that the density of the CLV spiral points remain constant
for the entire spiral trajectory. This is because in the CLV
spiral, the time taken for the spiral trajectory to make one full
circle reduces asr approaches the origin of the spiral.

Next, the error introduced by mapping the spiral points
to the raster points is analyzed. This mapping error can be
determined by calculating the magnitude of the vector between
the nearest spiral point corresponding to each raster point.
Fig. 5 (a) illustrates an example of the vector between spiral
point Acav and raster pointBcav which corresponds to raster
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Figure 6. SPM system and experimental setup used in this work.

point (2,6). The magnitude of this vector can be calculated as
∣∣∣AB(i, j)

cav

∣∣∣ =

√
(Ax

cav−Bx
cav)

2 +
(
Ay

cav−By
cav

)2
(36)

where i = 2 and j = 6. Similar calculation can be performed
on the CLV spiral to evaluate the magnitude of the vector
between spiral pointAclv and raster pointBclv as shown in
Fig. 5 (b).

III. SYSTEM DESCRIPTION

The experimental setup consisted of a commercial NT-MDT
Ntegra Scanning Probe Microscope (SPM) as shown in Fig. 6.
The SPM can be used to perform almost all scanning probe
microscopy techniques in air and liquid environment. The
SPM’s operating software limits the highest image resolution
to 256 × 256 pixels. At this resolution the fastest scanning
frequency is limited to 31.25 Hz. However, faster scan fre-
quencies are possible by reducing the resolution. For example,
by halving the resolution to 128× 128 pixels, the fastest scan
frequency is doubled to 62.50 Hz.

In the experiments reported in this paper, the SPM was
configured to operate as an AFM and all sample images were
scanned in air. The voltage amplifiers which drive the lateral
axes of the piezoelectric tube scanner were replaced with two
home made DC-accurate charge amplifiers [25]. The charge
amplifiers have a constant gain of 68 nC/volt. The use of
the charge amplifiers to drive the piezoelectric tube has been
shown to result in a reduction of the hysteresis by greater
than 90 % as compared with when voltage amplifiers are used
[26]. A dSPACE-1103 rapid prototyping system was used to
implement the feedback controllers in real time. The amplifiers
and the SPM were interfaced with the dSPACE system using a
signal access module (SAM) that allowed direct access to the
scanner electrodes. This setup enabled us to directly control
the lateral movements of the scanner. However, the scanner
vertical positioning was achieved using the standard NT-MDT
SPM controller.

There are two types of scanner that can be incorporated into
the SPM, an open-loop scanner (without displacement sensors)
and a closed-loop scanner (with displacement sensors). The
closed-loop scanner allows accurate position tracking through
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+x −x

+y

−y

Figure 7. Top view of the piezoelectric tube with the internal and external
electrode wired in a bridge configuration.

feedback control. In these experiments, a closed-loop scanner
NT-MDT Z50309cl was used to perform 3D positioning in
the SPM. It has a scanning range of 100× 100 × 10 µm.
The capacitive sensors that are incorporated into the scanner
apparatus allow for direct measurements of the scanner dis-
placement inx, y andzaxes. The bandwidth of these capacitive
sensors is tunable and has a maximum value of 10 kHz. In
these experiments the bandwidth is set to the maximum in
order to minimize the effect of the capacitive sensors dynamics
on the displacement measurements. The sensitivity of the
capacitive sensors was determined by making the scanner track
a 0.5 Hz triangular wave of 100µm amplitude in closed-loop
using the standard NT-MDT SPM controller. Simultaneously,
the corresponding output voltages from the capacitive sensors
were also measured. From these two values, the sensitivity of
the capacitive sensors incorporated into thex andy axes was
calculated to be 6.33µm/volt. In this test, a low frequency
triangular wave was used to ensure perfect tracking by the
standard NT-MDT SPM controller.

The piezoelectric tube in the scanner has quartered internal
and external electrodes. Such electrode arrangement allows
the scanner to be driven in a bridge configuration [26] where
the electrodes are wired in pairs as illustrated in Fig. 7. These
electrode pairs are referred to as+x, −x, +y and−y electrode
pairs. An advantage of using the bridge configuration is that
it halves the input voltage requirement as compared to the
more widely-used grounded internal electrode configuration.
Nevertheless, in these experiments the−x and−y electrodes
are grounded in order to simplify the experimental setup.
Furthermore, the need for a large scanning range does not
arise here since the scanner is only made to operate within
12 % of its full lateral scanning range.

During scans, measurements from the capacitive sensors and
photodiode are recorded and processed in Matlab to generate
AFM images.

IV. SYSTEM IDENTIFICATION

In this section, the procedure used to model the AFM scan-
ner is described. The scanner is treated as a two single-input
single-output (SISO) systems in parallel. The inputs beingthe

A/D D/A
dSPACE

1103

SAM

ux, ux

cx, cx

Charge

amplifiers

Capacitive

sensors

Piezoelectric

tube

Scanner

Figure 8. Block diagram of the experimental setup used for system
identification of the scanner.

voltage signals applied to the charge amplifiers driving+x
electrode pair,ux and +y electrode pair,uy. The outputs of
the system are the scanner displacement measurements from
the capacitive sensors inx-axis, cx, and in y-axis, cy. Here,
accurate models of the systems were obtained through system
identification. System identification is an experimental ap-
proach to modeling where mathematical models are obtained
from a set of input and output data [27].

Fig. 8 illustrates the experimental setup used for the system
identification experiment. A dual-channel HP35670A spec-
trum analyzer was used to obtain the following frequency
response functions (FRFs) nonparametrically

Gcxux (iω) =
cx (iω)

ux (iω)
(37)

and

Gcyuy (iω) =
cy (iω)

uy (iω)
. (38)

A band-limited random noise signal of amplitude 0.5 Vpk
within the frequency range of 1 Hz to 1600 Hz was gener-
ated using the spectrum analyzer and applied to the charge
amplifiers as the input. The corresponding outputs from the
capacitive displacement sensors were also recorded using the
spectrum analyzer. These input-output data were processedto
generate the FRF (37) and (38) in a non-parametric form as
illustrated in Fig. 9. Note that the 0 dB (unity gain) at DC
in both FRFs was achieved by introducing appropriate input
gains in the dSPACE system.

Two second order models were fitted to the FRFs data using
the frequency domain subspace-based system identification
approach as described in [28] and [29]. The following transfer
functions were found to be a good fit as illustrated in Fig. 9,

Gcxux (s) =
0.1254s2−1784s+1.309×107

s2 +28.35s+1.309×107 (39)

and

Gcyuy (s) =
0.1006s2−1610s+1.318×107

s2 +57.59s+1.318×107 . (40)

It can be inferred from transfer functions (39) and (40)
that the piezoelectric tube scanner has very weakly damped
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Figure 9. Experimental(−−) and identified model(—) frequency response
of (a) Gcxux (s) and (b)Gcyuy (s).

resonances inx and y axes. In thex-axis the resonance is
at 576 Hz with a damping ratio of 0.004 and in they-axis
the resonance is at 578 Hz with a damping ratio of 0.008. It
must be mentioned here that the non-minimum phase zeros
in both transfer functions do not reflect the physical natureof
the scanner, but are rather artifacts of the system identification.
The subspace-based system identification approach introduces
these non-minimum phase zeros in order to model delays
which exist in the system due to the capacitive sensor signal
processing electronics and dSPACE sampling time.

V. CONTROLLER DESIGN

This section addresses design of feedback controllers un-
dertaken in this work. Feedback controllers for thex and y
axes were designed independently since the scanner is treated
as a two SISO systems in parallel. The key objectives of the
controller design are to achieve good damping ratio for the first
resonant mode of the piezoelectric tube scanner and to achieve
a high closed-loop bandwidth to allow accurate tracking of the
CAV and CLV spirals. Although the use of CAV spiral allows
us to select the frequencies that will not excite the resonance
of the scanner, it is still important to actively damp the scanner.
External vibration and noise can result in perturbations inthe
AFM image if scanner’s mechanical resonance is not damped.
The need to damp the scanner becomes more important when
it is used to track a CLV spiral input. This is because the
CLV spiral input consists of high frequency components that
will inevitably excite the mechanical resonance of the scanner.
Additionally, the feedback controller can minimize the effect
of piezoelectric creep, that can cause further perturbation in
the image [30].

Structure of thex-axis feedback controller is illustrated in
Fig. 10. A similar controller was designed for they-axis. The
overall control structure consists of an inner and an outer
loop. The inner loop contains a Positive Position Feedback
(PPF) controller that works to increase the overall dampingof
the scanner. The outer loop contains a high-gain integral con-

rx
ux cx

TubeI(s)

KPPFx

Figure 10. Structure of thex-axis feedback controller. The inner feedback
loop is a positive position feedback (PPF) controller designed to damp the
highly resonant mode of the tube. Integral action is also incorporated to
achieve satisfactory tracking.

troller to provide tracking. The PPF controllers were initially
designed to suppress mechanical vibrations of highly reso-
nant aerospace structures [31]. They have been successfully
implemented on a range of lightly damped structures [32]–
[34]. Their effectiveness in improving accuracy and bandwidth
of nanopositioning systems was recently investigated in [15],
and their important stability properties were establishedin
[35]. PPF controllers have a number of important features.
In particular, they have a simple structure which makes their
implementation straight forward and their transfer functions
roll off at a rate of 40 dB/decade at higher frequencies. The
latter is important in terms of the overall effect of sensor
noise on the scanner’s positioning accuracy. The details ofthe
procedure that was followed to design these PPF controllers
is documented in reference [15]. The obtained PPF controllers
can be described as

KPPFx (s) =
9.282×106

s2 +6062s+2.736×107 (41)

and

KPPFy (s) =
9.313×106

s2 +6071s+2.758×107 . (42)

The designed control system also includes a high-gain
integral controller

I (s) =
KI

s
(43)

as illustrated in Fig. 10. Inclusion of an integrator amounts
to applying a high gain at low frequencies that reduces the
effects of thermal drift, piezoelectric creep and hysteresis
to a minimum. Another important benefit of the proposed
combined feedback structure is the significant reduction that
can be achieved in cross-coupling between various axes of the
scanner.

The use of high gain in the integral controllers is made
possible by the suppression of the sharp resonant peaks in thex
andy axes due to the PPF controllers. Fig. 11 illustrates Bode
diagrams showing gain margins when a unity gain integral
controller is cascaded with undamped scanner’s transfer func-
tions, 1)Gcxux (s) and 2)Gcyuy (s), and with damped scanner’s
transfer functions 3)Tcxux (s) and 4)Tcyuy (s), where

Tcxux (s) =
Gcxux (s)

1−KPPFx (s)Gcxux (s)
(44)

and

Tcyuy (s) =
Gcyuy (s)

1−KPPFy (s)Gcyuy (s)
. (45)
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Figure 11. Bode diagrams showing gain margins when a unity gainintegral
controller is cascaded with undamped(−−) and damped(—) scanner’s
transfer functions in (a)x and (b)y axes.

The gain margins for the undamped systems are 30.2 dB and
36.1 dB in x and y axes respectively. This implies that the
gain of the integratorKI is limited to less than 32 and 64 in
the x and y axes respectively for stability of the closed-loop
systems. However, the gain margins for the damped systems
are 60.8 dB and 61.0 dB inx and y axes respectively. This
implies that the gain of the integratorKI can be increased
significantly from 1 to up to 1097 and 1122 in thex andy axes
respectively, before the closed-loop systems become unstable.
In this work, the gain of the integrators were tuned to provide
high closed-loop system bandwidth but with reasonable gain
and phase margin.

VI. RESULTS

A. Tracking Performance

The closed-loop frequency responses of the piezoelectric
tube scanner were first measured using the spectrum analyzer.
Fig. 12 illustrates the closed-loop frequency responses when
plotted together with the open-loop frequency responses ofthe
system. By examining these FRFs we can see that a damping
of more than 30 dB is apparent at each resonant mode. The
use of the high-gain integral controllers has resulted in a high
closed-loop system bandwidth of about 540 Hz in both axes.
However, in the closed-loop system, the frequency responses
exhibit a faster phase drop rate as compared to the open-
loop system. Consequently this results in greater phase shifts
between the desired and the achieved trajectories. In this work,
the phase shifts are handled by shaping the input signals as
discussed in Section II-B.

The frequency responses for the cross-coupling of the AFM
scanner in open and closed loop were also obtained and
are illustrated in the off-diagonal frequency response plots
of Fig. 12. In open loop, significant cross-coupling of about
30 dB can be observed between lateral axes of the scanner. In
closed loop, the cross-coupling was substantially reducedas a
result of the integral action. In particular, the cross-coupling
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Figure 12. Open-loop(−−) and closed-loop(—) frequency responses of
the scanner. The closed-loop system bandwidth of both axes is about 540 Hz
and the resonant behavior of the scanner is improved by over 30dB due to
control action.

is less than 50 dB for low frequency ranges (i.e.≤ 8 Hz).
To illustrate the improvement achieved in the cross-coupling,
we performed the following experiments in open and closed
loop. A 5 Hz sinusoidal signal was applied to the+x electrode
to produce a 12µm displacement range in thex-axis of the
scanner. As a result of the cross-coupling fromx to y-axis,
the scanner also produced a smaller displacement range in
they-axis. Both displacements were then recorded and plotted
in Fig. 13 (a). Similar experiments were also carried out by
applying the 5 Hz sinusoidal signal to the+y electrode. The
subsequent displacements in they and x axes were recorded
and plotted in Fig. 13 (b). A significant improvement can
be observed by comparing the cross-coupling in open and
closed loop. In closed loop, the root-mean-square (rms) cross-
coupling fromx to y-axis and fromy to x-axis was reduced
to about 6 % of the cross-coupling in open-loop.

The performance of the closed-loop systems were then
evaluated for high-speed tracking of the CAV and CLV
spirals. Both types of spiral were setup to produce spiral
scans withrend = 6 µm and number o f curves= 512, i.e.
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Figure 13. Closed-loop(—) and open-loop(−−−) tracking trajectory of
5 Hz sinusoidal signal (left) and their corresponding cross-coupling (right).
(A small phase shift was purposely added into the close-loop time responses
in order to clearly display the open- and closed-loop time responses.)

the diameter of the resulting circular image consists of 512
pixels. Fig. 14 (a) to (f) illustrate tracking trajectoriesof the
CAV spirals for ωs = 31.4, 94.3, 188.5, 565.5, 754.0 and
1131.0 radians/s. This corresponds to scanning frequencies
of fs = 5, 15, 30, 90, 120 and 180 Hz, respectively. In
order to allow visual comparison of the tracking trajectories,
plots in Fig. 14 (a) to (f) were made to display only the
trajectories between±0.15 µm. It can be observed that the use
of the designed feedback controllers and the shaped input have
resulted in excellent tracking performance of the CAV spirals
up to ωs = 1131.0 radians/s. In order to quantify the tracking
performance, the rms tracking errors between the desired and
the achieved trajectories were calculated and are tabulated in
Table I. The rms tracking error is defined as

Erms =

√
1

ttotal

∫ ttotal

0
(r (t)− ra (t))2dt (46)

where r is the desired trajectory (or the radius) andra =√
c2

x +c2
y is the achieved trajectory. Table I shows thatErms

increases as the spiral frequency increases. This increaseis
mainly due to the inability of the feedback controller to
accurately track the rapid changes in the amplitude of the spiral
inputs asωs is increased. Nevertheless, atωs = 1130.97 radi-
ans/s,Erms still remains relatively low, i.e. only 0.15 % of the
maximum scanning range (spiral’s diameter).

Fig. 14 (g), (h) and (i) illustrate the tracking trajectories
between±0.30 µm of the CLV spirals forvs = 0.2, 0.6 and
1.1 mm/s. The values ofvs were calculated usingvs = ω̃endrend

where ω̃end = 31.4, 94.3, 188.5 radians/s. As mentioned
earlier, the CLV spiral scans were implemented in a reversed
order, that is fromrend to rstart. Fig. 14 (g) shows that relatively
good tracking was obtained forvs = 0.2 mm/s. However for
vs = 0.6 and 1.1 mm/s, Fig. 14 (h) and (i) illustrate very
little tracking were achieved in a small region surrounding
the center of the spirals where the frequency components of

Table I
RMS VALUES OF TRACKING ERROR AND TOTAL SCANNING TIME FOR

CAV AND CLV SPIRAL SCANS. THE number o f curveFOR THESE SPIRAL

SCANS WAS SET TO512.

CAV Spiral CLV Spiral
ωs Erms ttotal vs Erms t̃total

(radians/s) (nm) (s) (mm/s) (nm) (s)
31.4 2.81 51.10 0.19 3.60 25.55
94.3 4.60 17.03 0.57 7.26 8.52
188.5 5.19 8.52 1.13 10.67 4.26
565.5 10.38 2.84 - - -
754.0 11.30 2.13 - - -
1131.0 18.16 1.42 - - -

Table II
RMS VALUES OF SPIRAL TO RASTER POINTS MAPPING ERROR FORCAV

AND CLV SPIRAL SCANS.

CAV Spiral CLV Spiral
ωs fsamp EmapRMS vs fsamp EmapRMS

(radians/s) (kHz) (nm) (mm/s) (kHz) (nm)
31.4 10 2.49 0.19 10 2.61
94.3 20 2.64 0.57 20 2.83
188.5 20 3.12 1.13 20 3.49
565.5 40 3.42 - - -
754.0 60 3.51 - - -
1131.0 60 3.75 - - -

the input signals have increased to well beyond the bandwidth
of the closed-loop system. Nonetheless, Table I shows that
theErms for the CLV spirals is still relatively small since most
of the tracking errors were limited only to the center of the
resulting spiral scan.

B. AFM Imaging

Having analyzed the performance of the closed-loop system
in tracking the CAV and CLV spirals, we then moved on
to investigate the use of spiral scanning in generating AFM
images. The spiral scans were setup to produce images with
rend= 6.5 µm andnumber o f curves= 512, i.e., the diameter
of the resulting circular image consists of 512 pixels. However
before performing the spiral scans, the RMS of mapping errors
EmapRMS for the CAV and CLV spirals scans at different angular
and linear velocities are calculated and tabulated in TableII.
Note that, different sampling frequenciesfsamp were used in
order to minimize the computing time for searching the nearest
spiral point corresponding the each raster point. Additionally,
the sampling frequency is also limited by computational power
of the dSPACE rapid prototyping system. Table II shows that
theEmapRMS are very small and less then the pitch of the spiral
trajectory and the raster points, i.e., 25.44 nm. Thus, they can
be ignored.

A calibration grating NT-MDT TGQ1 with a 20 nm feature-
height and a 3µm period was used as an imaging sample. The
AFM was setup to scan the sample in constant-height contact
mode using a contact AFM probe with a nominal spring
constant of 0.2 N/m and resonance frequency of 13 kHz. The
constant-height contact mode was used here as the commercial
AFM controller that controls the vertical positioning of the
scanner is not fast enough to track the sample topography
for high-speed scans. During each scan, the AFM probe is
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Figure 14. First two columns: (a) - (f) Tracking trajectoriesof CAV spirals between between±0.15 µm in closed-loop forωs = 31.4, 94.3, 188.5, 565.5,
754.0 and 1131.0 radians/s. Third column: (g) - (i) Tracking trajectories of CLV spirals between±0.30 µm in closed-loop forvs = 0.2, 0.6 and 1.1 mm/s.
The pitch of the spirals was set at 0.0235µm. Solid line is the achieved response and dashed line is the desired trajectory.

deflected due to its interactions with the sample. The probe
deflection was measured and later used to construct AFM
images of the sample topography. Figs. 15 (a) to (f) illustrate
AFM images generated using the CAV spiral scans withωs =
31.4, 94.3, 188.5, 565.5, 754.0 and 1131.0 radians/s. It canbe
observed from these figures that the obtained images are of a
good quality and the profile of the calibration grating is well
captured. In particular, the images are free from typical distor-
tions caused by tracking errors, scanner vibrations, hysteresis
and creep. It is also worth mentioning that the areas around
the outer edges of the images was also relatively well imaged.
However, during high-speed scans withωs = 565.5 radians/s
and above, a wave-like artifact can be observed around the
outer edge of the AFM images. Upon a closer examination
of the probe deflection signals, we found that the artifacts
were a result of the excitation of the probe’s resonance.
Fig. 16 illustrates the probe deflection signals betweenr =

0.597 µm and 0.6µm for ωs = 31.4 and 1131.0 radians/s.
Fig. 16 (a) shows that during a low-speed scan the probe
deflection signal is free of vibrations. However at a high-speed
scan, Fig. 16 (b) shows that the probe vibrates at its resonance
frequency (≈ 12 kHz) after every step change in the sample
profile. Thus, the image quality can be improved by using
a stiffer micro-cantilever. This would allow for much higher
scan frequencies, approaching the mechanical resonance ofthe
scanner.

Next, a similar AFM setting was used to generate similar
images using the CLV spiral scanning mode. Fig. 15 (g), (h)
and (i) illustrate the generated AFM images forvs = 0.2, 0.6
and 1.1 mm/s. Forvs = 0.2 mm/s, it can be observed that
the profile of the calibration grating was well imaged. This
is in agreement with the good tracking performance achieved
at this scanning speed as illustrated in Fig. 14 (g). However,
for higher values ofvs, Fig. 15 (h) and (i) illustrate that a
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Figure 15. AFM images of NT-MDT TGQ1 grating scanned in closed-loop using the CAV spiral scanning mode for (a) - (f)fs = 5, 15, 30, 90, 120 and
180 Hz (which corresponds toωs = 31.4, 94.3, 188.5, 565.5, 754.0 and 1131.0 radians/s) and using the CLV spiral scanning mode for (g) - (i)vs = 0.2, 0.6
and 1.1 mm/s. Thenumber o f curvefor these AFM images was set to 512.

small hole-like artifact is formed at the center of each image.
This is due to the loss of tracking control when the frequency
components of the input signals have increased to well beyond
the bandwidth of the closed-loop system. The lack of tracking
control has also resulted in a slightly skewed AFM image
around the center of the spiral forvs = 1.1 mm/s.

Finally, we would like to evaluate the capability of the CAV
spiral scans in generating the AFM images when operated in
open loop . The use of single frequency input as mentioned in
Section II-A would allow the open-loop tracking of the CAV
spirals to be performed rather accurately. However, to achieve
this, one has to deal with the nonlinearities of the piezoelectric
tube scanner, particularly with hysteresis and creep. In this
work, the effect of hysteresis was significantly reduced by the
use of the charge amplifiers instead of voltage amplifiers to
drive both axes of the scanner. As for the creep, its effect was
minimized by simply waiting a considerable amount of time

for it to disappear before performing the scans. Fig. 17 (a),(b)
and (c) illustrate AFM images generated using the CAV spiral
scans operated in open loop forfs = 5, 30 and 90 Hz. It
can be observed from these images that the spiral scanning
methods works surprisingly well when operated in open-loop.
This could be partially due to the fact that by controlling
charge, we have managed to substantially minimize the effect
of hysteresis. However, even if the scanner were driven with
voltage amplifiers, the hysteresis nonlinearity could havebeen
compensated for by perturbing the input signal. This would be
rather straight forward due to the single-tone nature of signals
applied to thex- and y- electrodes of the piezoelectric tube
scanner.

VII. C ONCLUSIONS ANDFUTURE WORK

In conclusion, in this paper we demonstrated how a CAV
and CLV spiral scans can be used to obtain AFM images. It is
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Figure 17. AFM images of NT-MDT TGQ1 grating scanned in open-loop using the CAV spiral for (a) - (c)fs = 5, 30, and 90 Hz. Thenumber o f curve
for these AFM images was set to 512.
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Figure 16. Probe deflection signals showing the profile of thecalibration
grating for (a)ωs = 31.4 radians/s and (b)ωs = 754.0 radians/s.

possible to achieve high-speed atomic force microscopy using
the CAV spiral scanning, but other issues like the vibrations
in the AFM probe need to be considered and addressed. The
use of CLV mode spiral scanning requires a high-bandwidth
controller for accurate tracking of the input signals. Apart
from the above mentioned artifacts formed at the center of the
CLV spiral, the obtained AFM images have good qualities.
We also demonstrated that the proposed method could work
well without using a feedback controller around the AFM
scanner. The possibility of using spiral scanning in other SPM
applications such as STM should also be explored in the future.
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