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Abstract. We report on the simulation of vibrational resonances of stiff atomic
force microscope cantilevers made of silicon by finite element methods (FEM)
for application in contact-resonance spectroscopy. The FEM model considers
the cubic symmetry of silicon single crystals and the geometrical shape of the
cantilevers with a trapezoidal cross section and a triangular free end. Using a
two-step iterative procedure, we fitted our FEM model to the experiment. In a
first step, we used the measured resonant frequencies of an individual cantilever
to fit the geometrical dimensions of the cantilever beam model. In a second step,
we measured the resonant frequencies of the same cantilever in contact with a
sample and determined the out-of-plane and in-plane tip–sample contact stiffness
values by a fitting procedure. The FEM model also allows precise calculation of
the spring constant of the cantilever, and consequently calculation of the force in
contact. Finally, we compared the contact stiffness values with those predicted
by contact mechanics models.
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1. Introduction

Atomic force microscopy (AFM) is a useful tool for materials characterization with a spatial
resolution at the nanoscale level [1]. The AFM sensor is a flexible micro-beam with a
sensor tip at its end. Commercially available cantilevers are made of silicon single crystals
by micromachining technology following some preferential cleavage planes. AFM and its
modifications have been intensely used for obtaining high-resolution images of topography
and other surface properties such as e.g. adhesion, friction, electric and magnetic forces,
ferroelectric polarization, and mechanical stiffness [2] probed by the cantilever tip in contact,
intermittent contact, or non-contact with the sample by means of bending or torsion of the beam.
High frequency (≈100 kHz–3 MHz) dynamic techniques like atomic force acoustic microscopy
(AFAM) ([3] and references cited therein) or ultrasonic atomic force microscopy (UAFM) [4, 5]
which combine AFM with ultrasound are particularly suitable for stiffness and elastic or
viscoelastic measurements. These techniques are based on contact-resonance spectroscopy, i.e.
they exploit the resonance spectra of vibrating AFM cantilever beams when the tip is in contact
with a sample surface.

Contact-resonance vibrations of the cantilever can be excited either by a vibration of the
sample surface, which in turn is excited by an ultrasonic transducer coupled to the sample
(AFAM) or by a vibration of the cantilever holder (UAFM) or the cantilever itself. Caused
by the forces acting between the tip and the sample surface, the contact-resonance frequencies
of the bending, torsional and lateral modes of the cantilever shift relative to its free vibration
spectra. If an excitation frequency near a flexural contact-resonance is applied and, while
scanning a sample surface, the amplitude and phase of the resulting cantilever vibration is
recorded by lock-in-techniques, an elastic stiffness image of the surface is obtained. The
spatial resolution depends on the tip–sample contact radius, which is usually in the range
from 10 to 100 nm. For quantitative evaluation, complete contact-resonance spectra have to
be measured [6]. The contact-resonance frequencies of the cantilever provide the tip–sample
contact stiffness [3]–[6], which depends on the elastic indentation moduli of the tip and the
sample and on the shape of contact.
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The quantitative analysis procedure requires a convenient analytical or numerical model.
Analytical models describing the free cantilever-vibration as well as the contact-resonances
assuming AFM cantilever beams of constant cross section and rigid clamping at one side are
well known ([7] and references cited therein). This approach works well to describe the overall
behavior of the vibration modes. However, the resonances of most of the cantilevers show slight
systematic deviations from the analytical models, and the theoretical frequencies cannot be fitted
to two or more experimental free bending modes simultaneously with an error in the resonance
frequencies of less than 10%. This holds especially for stiff cantilevers with spring constants
of about 5–50 Nm−1, which are used for contact-resonance applications [8]. Furthermore, the
analytic description of the cantilever vibrations used so far in the literature reproduces the
contact-resonance frequencies with accuracies of less than 20% [3], [6]–[9]. Therefore, a more
precise modeling shall improve the understanding of the oscillatory behavior of the cantilever
in AFAM measurements and help to quantify the tip–sample interactions. Numerical modeling
using the finite element method (FEM) seems to be an effective tool for this purpose, since it
allows a more detailed description of the cantilever.

One-dimensional (1D) finite element and 3D beam element models have been used to
simulate the AFM cantilever [10, 11], but they neglect important details of the geometric shape.
Other simulations by ANSYS taking into account a more realistic geometrical shape of the
cantilevers compared calculated vibration modes with experimental results in order to obtain
precise static spring-constant values [12, 13]. A finite element model of triangular cantilevers
was applied to measure shear stiffness [14], and tip effects on contact-resonance vibrations and
modal sensitivities of triangular cantilevers were examined by FEM methods [15]. The dynam-
ics of AFAM measurements were modeled by FEM in order to determine quantitatively elastic
properties of thin films [16]. But this work does not consider the elasticity of the suspension
of AFM cantilevers, which influences significantly the resonance frequencies [8]. A previous
publication [17] presents the first FEM model of AFM cantilevers considering the actual
features of its geometry, however, neglecting the elastic anisotropy of single-crystal silicon.

This paper presents a two-step FEM fitting procedure in order to simulate the vibrational
resonances of single-crystal silicon cantilevers considering their most important geometrical
details as well as their elastic anisotropy. The lowest bending, torsional and lateral bending
modes of a free cantilever are measured as well as the first three bending modes with sample
surface contact. The geometrical parameters of the FEM cantilever model are first fitted
to reproduce the measured first and third free bending mode. Subsequently, tip length and
cantilever declination were adapted to the measured contact-resonance frequencies of these
two modes. With the obtained FEM cantilever model, the bending as well as the torsional
resonances were predicted and compared with the experimental spectra. The objective of this
work was to obtain an improved model for AFM cantilever vibration simulations allowing the
prediction of resonance frequency shifts as a function of the tip–sample contact stiffness. This
FEM approach should allow a higher precision in the determination of contact stiffness than
previously achieved by using analytical models.

2. Description of the cantilever model

For the experiments described here, we used commercial atomic force microscope cantilevers
made of silicon single crystals (Nanosensors, NanoWorld Services, Switzerland, ‘non contact
long (NCL)’ beams). The dimensions of these cantilevers range from 146 to 236 µm × 30

New Journal of Physics 11 (2009) 083034 (http://www.njp.org/)

http://www.njp.org/


4

Figure 1. SEM micrographs showing (a) a side view of a cantilever, (b) an
enlarged side view of the end of the cantilever carrying the sensor tip and
(c) a view from the bottom side where the tip is mounted.

Figure 2. Schematic of the probe geometry used for the FEM simulations.

to 45 µm × 6 to 8 µm (length × width × thickness) with spring constants from 21 to 98 N m−1.
Scanning electron microscope (SEM) micrographs of such a cantilever are shown in
figure 1 [18]. The trapezoidal cross section and the triangular end of this type of beam, which
result from batch fabrication by anisotropic etching, are clearly visible. The protruding free
part of the cantilever continues on top of the holder as a strip with trapezoidal cross section. A
small part of the holder, to which the cantilever is fixed, is visible at the left side of figures 1(a)
and (c).

Our FEM model contains the main geometrical features of the NCL sensors. A schematic
representation of this model is shown in figure 2. The probe is described as a beam with
trapezoidal cross section and a triangular free end. The cantilever has a total length L. The
sensor tip position is L tip and the tip length is htip. The cross section of the beam has an upper
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Figure 3. Schematic of the cantilever (a) with its coordinate system {x ′,y′,z′
}

inclined by an angle θ relative to the sample surface coordinate system {X, Y, Z}.
The tip–sample forces are modeled by three springs with spring constants kN and
kS for vertical and lateral contact stiffness, respectively; (b) FEM model of the
cantilever after meshing.

width w1, a bottom width w2 and a thickness t . In order to model the clamping conditions of the
cantilever suspended at the holder, we extended the cantilever by an element with trapezoidal
cross section, length Lholder and thickness t t + t . The top surface of this extension is rigidly fixed
(figure 2(a)).

For the description of the cantilever, we used a Cartesian coordinate system with the x ′-,
y′- and z′-axes in the cantilever length, thickness and width directions, respectively (figure 3).
These axes coincide with the crystallographic axes [110], [001] and [11̄0] of the cubic single
crystal material, respectively. The length axis of the cantilever is not parallel to a cube edge of
the silicon single crystal, but to a face diagonal. We rotated the matrix of elastic constants
accordingly for our FEM model as shown in appendix A. The rotated matrix contains six
different elastic constants instead of 3, consequently the symmetry of the material in the
cantilever coordinate system is tetragonal. The elastic constants for the rotated coordinate
system are E ′

x = E ′

z = 169.7 GPa, E ′

y = 130.4 GPa, ν ′

xy = ν ′

zy = 0.362, ν ′

yz = ν ′

yx = 0.278, ν ′

xz =

ν ′

zx = 0.061, G ′

xy = G ′

yz = 80.0 GPa and G ′

zx = 51 GPa (see appendix A, the single crystal
elastic constants given there correspond to Young’s moduli of the cantilevers given by the
manufacturer). These values and the mass density of silicon ρSi = 2330 kg m−3 were used in
the FEM simulations.
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Table 1. Experimentally measured geometrical parameters of the cantilever
compared with those obtained by fitting the FEM model to the free vibrations.
The parameters htip = 13 µm, Lholder = 300 µm, t t = 4.0 µm and θ = 12◦ were
fixed.

Parameter Measured values FEM values Relative difference (%)

L(µm) 234.9 ± 3.0 235.2 0.13
w1(µm) 54.2 ± 0.8 54.2 0.08
w2(µm) 18.9 ± 0.9 18.8 0.71
t (µm) 6.7 ± 0.1 6.6 1.57

The simulations were carried out with the commercial finite element modeling (FEM)
software (ANSYS-Engineering Analysis System V10) [19]. The bulk of the cantilever and the
tip were approximated by SOLID95 3D elements. The FEM model comprises 6221 elements
with linear dimensions of about 1.5 µm on average for both the beam and the tip. In the regions
where higher strain was to be expected, the density of the grid elements was increased, as
shown in figure 3(b). The modal analysis problem was solved by means of the ‘Block–Lanczos
method’, which was derived to solve classical eigenvalue problems and is described in detail in
the literature [20].

For practical reasons, the length axis of AFM cantilevers inclines by an angle θ toward
the sample surface. We modeled the tip–sample contact forces as three springs in a coordinate
system {X, Y, Z} aligned to the sample surface (figures 3(a) and (b)). The coordinate system
{X, Y, Z} was chosen to coincide with the cantilever system {x ′, y′, z′

} for θ = 0◦. The spring
constants kN and kS are the tip–sample contact stiffness values in out-of-plane (Y-axis) and in-
plane direction (X- and Z-axes). In our FEM model, we used three 1D elements COMBIN14
to represent the tip–sample contact in the three orthogonal directions relative to the sample
surface, each with its characteristic spring constant as well as its damping coefficient. In the
numerical simulation, a stiff tip (elastic constants ≈105 GPa) was assumed in order to avoid an
unrealistically large deformation of the tip end due to the contact forces acting like a point load.

3. Fitting of the FEM model to an individual cantilever

One individual non-contact long (NCL) AFM cantilever (NCL 52461F2L406, probe no. 2)
was characterized by optical and scanning electron microscopy by the manufacturer to obtain
its geometrical data [18]. Additionally, we measured its geometrical dimensions in an optical
microscope. The averaged geometrical data are listed in table 1. A precision of 0.1–3 µm of the
geometrical data was achieved. This measurement error led to an error of at least several kHz
in frequency using analytical models for resonance frequency calculations (table 2). We assume
a similar error from geometrical uncertainty if FEM analysis is used. However, the resonance
frequencies of a cantilever can be measured with a precision better than 1%, because the quality
factor of the experimental resonance curves in air is close to 200 or higher (see table 2). The free
resonances of the cantilever were measured by exciting the cantilever holder with an ultrasonic
transducer, sweeping the excitation frequency and measuring the forced cantilever vibration by
an interferometer [21]. We obtained resonance spectra including bending, torsional and lateral
vibration modes of the cantilever (table 2).
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Table 2. Experimental resonance frequencies of the cantilever and the
corresponding quality factors, values obtained with FEM simulation, and values
obtained with analytical models; (B) denotes bending, (L) lateral and (T)
torsional modes. For the calculations, the parameters of table 1 were used.
The errors in the analytically calculated frequencies follow from the measuring
inaccuracies in the geometrical data in table 1.

Experimental Experimental Frequencies Relative Frequencies Relative
Vibrational frequencies quality factor from FEM difference from analytical difference
modes (kHz) Q model (kHz) to exp. (%) models (kHz) to exp. (%)

B1 169.84 539 169.72 0.07 167.44 ± 7.57 1.41
L1 974.993 969 1021.5 4.77 1056.0 ± 46.9 8.31
B2 1048.42 639 1050.1 0.16 1049.3 ± 47.4 0.08
T1 1531 824 1541.9 0.71 1457.7 ± 62.4 4.79
B3 2876.73 228 2888.6 0.41 2938.2 ± 132.8 2.14
T2 4519.8 188 4579.9 1.33 4373.1 ± 184.9 3.25

We used an optimization procedure in ANSYS, the sub-problem method [22], to fit
the geometrical parameters of the FEM cantilever model for optimized agreement with the
experimental resonances. This optimization procedure is an advanced zero-order method with
the dependent and the fixed variables as well as the measured resonance frequencies as
input. For the dependent variables, first least-square fits were chosen and the constrained
minimization problem was converted to an unconstrained problem using penalty functions.
Then, the approximated and penalized function are minimized in each iteration step (equivalent
to one complete analysis loop) until convergence is achieved or termination is indicated.

To adapt the free cantilever vibration behavior, we varied the parameters length L, width
w1, w2, and thickness t in the FEM model within a range close to the experimental values.
The aim was to obtain the best fit to the measured resonance frequencies of the first (B1) and
third (B3) free bending mode. The second bending mode (B2) was not considered, because
there is an overlap of the spectra of the first lateral (L1) and the second bending (B2) mode, so
that they cannot easily be distinguished in numerical calculations. The parameters htip = 13 µm,
Lholder = 300 µm, t t = 4.0 µm, and θ = 12◦ were kept constant during the first fitting procedure.
The error of the fitting is defined by the error function

Error( f1, f3)[%] = 50

(
| f1 − fB1|

fB1
+

| f3 − fB3|

fB3

)
. (1)

Here, the frequencies f1 and f3 are calculated by the FEM model, and fB1 and fB3 are the
measured resonance frequencies of the modes B1 and B3, respectively. The minimum value of
Error( f1, f3) corresponds to a set of model parameters. The fitting procedure was stopped when
a minimum value of the error function lower than 1.0% was found.

Besides the average values of the measured geometrical parameters of the cantilever, table 1
shows the results of the FEM fitting procedure. In table 2, the measured resonance frequencies of
six vibration modes are compared with the corresponding values following from the fitted FEM
model as well as from analytical models, and the quality factor Q of the resonances determined
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from the width of the measured resonance curves is given. The measurements have been carried
out under laboratory conditions in air.

Analytical models to calculate beam vibrations are well known [7, 8, 13, 23]. Using
a fourth-order partial differential equation of motion, the flexural resonance frequencies fnf

are derived for homogeneous clamped-free beams with constant symmetric trapezoidal cross
section

fnf =
(αnfLeff)

2

2π L2
eff

√
EI

ρA
, (2)

where E is the Young’s modulus in the [110]-direction of single crystal silicon (E = E ′

x ),
ρ is the density of silicon, I = t3((w1 + w2)

2 + 2w1w2)/(36(w1 + w2)) is the area moment
of inertia of a beam with symmetric trapezoidal cross section and A = t (w1 + w2)/2 is the
cross-sectional area. If damping is neglected, the normalized wave numbers are αnfLeff =

{1.8751, 4.6941, 7.8548, 10.9954, . . .}. Here, an effective length of the cantilever Leff =

L − t/
√

2 is used, because this analytical model only holds for constant cross sections. The
torsional resonance frequencies ftnf are derived from a second-order partial differential equation

ftnf =
2n − 1

4Leff

√
Ct

ρ IP
, (3)

where IP = t3((w1 + w2)
2 + 2w1w2)/(36(w1 + w2)) + t (w1 + w2)(w

2
1 + w2

2)/48 is the polar area
moment of inertia and Ct is the torsional stiffness of a beam with symmetric trapezoidal cross
section (appendix B). The analytical results in table 2 follow from equations (2) and (3). For the
calculation of the lateral bending mode L1, equation (2) is used with interchanged cantilever
width and thickness. This entails the large deviation of the analytically calculated lateral bending
resonance in comparison to the experimental value, because in this case, the presumption that
the width has to be large compared with the thickness used in the derivation of equation (2) is
not fulfilled.

The comparison of the results in table 2 clearly shows a better agreement between
theoretical and experimental frequencies for the FEM than for the analytical calculations,
though we used refined analytical models considering of the trapezoidal cross section.

To fit the experimental resonance frequencies of the free cantilever vibrations (three
bending modes and two torsional modes, given in table 2) only the four parameters L , w1, w2,
t (table 1) were used. In this step, the parameters htip = 13 µm, Lholder = 300 µm, t t = 4.0 µm
and θ = 12◦ were fixed close to the expected values. Variations of these parameters do not
significantly affect the free cantilever vibrations.

4. Fitting of the FEM model to measured contact-resonance frequencies

The second step of the fitting procedure is based on the comparison of the simulated resonance
frequencies of the bending modes B1 and B3 to the corresponding experimental values of the
contact-resonances. AFAM measurements were carried out on two samples of fused silica and
single crystal nickel, respectively, increasing the static cantilever deflection from 0 to 60 nm
and decreasing it again to zero, i.e. each measurement consisted of a loading and an unloading
branch. The contact-resonance frequencies obtained from the spectra are plotted in figure 4
as full symbols (loading) and open symbols (unloading). We evaluated three measurements
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Figure 4. Contact-resonance frequencies obtained for the first, second and third
bending modes (B1, B2 and B3) on a fused silica and on a nickel single-crystal
sample. The full symbols designate the frequencies obtained during loading
and the open symbols those obtained during unloading. The lines are fits with
polynomial functions.

on fused silica (FS/1, FS/2 and FS/3) and two measurements on nickel (Ni/1 and Ni/2),
respectively. The sequence of measurements was FS/1, Ni/1, FS/2, Ni/2 and FS/3. To simplify
the analysis, we determined the resonance frequencies for static deflections of 30, 40, 50
and 60 nm by interpolating the experimental frequencies with polynomial functions (lines in
figure 4). These values are listed in table 3. The data for static deflections less than 20 nm were
not considered, because especially on fused silica a hysteresis is observed, as can be seen by
comparing the frequencies for loading and unloading in figure 4.

The simulations were carried out with the geometrical parameters of the cantilever
following from the FEM analysis of the free cantilever vibrations described in the previous
section. The variables to be fitted were the angle of inclination θ (variation range 10–14◦),
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Table 3. Contact-resonance frequencies for the first three bending modes on
fused silica and nickel for static cantilever deflections from 30 to 60 nm
for increasing and decreasing load, respectively. The listed results are values
interpolated from experimental data sets.

Resonance frequencies for Resonance frequencies for
Sample/ Static cantilever increasing static load decreasing static load

measurement deflection (nm) fB1 (kHz) fB2 (kHz) fB3 (kHz) fB1 (kHz) fB2 (kHz) fB3 (kHz)

FS/1 60 651.84 1598.5 3087.3 651.52 1597.7 3085.8
50 650.94 1595.5 3083.3 650.18 1596.0 3085.2
40 648.88 1592.2 3076.0 648.64 1593.7 3080.5
30 645.64 1588.0 3065.4 646.88 1590.9 3071.7

Ni/1 60 672.32 1675.7 3143.5 673.03 1678.9 3149.1
50 671.95 1657.3 3138.7 672.29 1657.2 3142.5
40 669.37 1639.8 3129.8 671.16 1640.3 3134.9
30 664.58 1623.4 3116.9 669.64 1628.3 3126.2

FS/2 60 653.22 1596.6 3075.6 653.33 1596.3 3078.6
50 652.84 1593.8 3075.7 652.71 1594.9 3073.0
40 651.2 1590.4 3068.2 651.62 1592.8 3062.1
30 648.28 1586.4 3053.3 650.06 1590.1 3045.9

Ni/2 60 668.41 1655.8 3143.1 668.75 1657.0 3143.2
50 667.05 1651.6 3132.4 668.26 1654.5 3138.4
40 664.33 1643.3 3121.8 666.71 1648.4 3131.4
30 660.24 1631.0 3111.4 664.08 1638.5 3122.2

FS/3 60 653.97 1599.6 3091.7 654.21 1599.4 3091.9
50 651.43 1595.9 3089.2 652.21 1597.3 3090.1
40 649.27 1591.8 3083.2 651.05 1594.4 3085.2
30 646.23 1587.3 3073.2 649.60 1590.9 3077.3

tip length htip (variation range 10–15 µm) and contact stiffness values kN (variation range
100–3000 N m−1) and kS (variation range 0–2000 N m−1). Tip length and angle of inclination
are varied within their typical ranges of commercial NCL cantilever beams as extracted from
high resolution SEM pictures (as e.g. figure 1). An essential objective of FEM modeling of
AFM cantilevers was to yield a procedure avoiding the need of high resolution SEM pictures
of each single AFM cantilever used for AFAM measurements. We assumed that the stiffness
values were the same for both bending modes B1 and B3 if the measurements were carried
out on the same material and at the same cantilever static deflection. The fitting procedure was
stopped and considered to be successful when the calculated resonance frequencies deviated
less than 1.0% from the experimental values. Equation (1) was used to define the deviation
between experimental and calculated frequencies. Table 4 lists the results of the best fits for the
parameters htip, θ , kS, and kN. The calculated resonance frequencies for the bending modes B1,
B2 and B3 and the corresponding error functions are listed in table 5.

As the values of the contact stiffnesses kS and kN were obtained from the best fit of the FEM
model to the experimental resonance frequencies, the error function is also a measure of the error
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Table 4. Parameters tip length htip, inclination angle θ , in-plane contact stiffness
kS and normal contact stiffness kN obtained as a result of the fitting procedure.

Fitted parameters for increasing static load Fitted parameters for decreasing static load

Stat. defl. htip θ kS kN htip θ kS kN

(nm) (µm) (deg) (N m−1) (N m−1) (µm) (deg) (N m−1) (N m−1)

FS/1 60 11.948 11.549 7.7871 1434.4 11.672 12.223 8.2974 1428.9
50 12.286 12.287 3.2677 1402.6 11.350 13.584 153.620 1409.1
40 12.388 12.624 20.546 1359.9 12.503 13.414 88.759 1353.6
30 13.710 11.120 5.2527 1344.7 11.103 13.819 5.5703 1354.3

Ni/1 60 12.904 11.532 72.749 1813.3 12.825 11.785 127.07 1819.5
50 12.865 13.038 61.339 1801.6 12.822 13.085 28.704 1835.9
40 12.733 12.278 60.755 1754.8 12.680 12.156 94.950 1800.9
30 12.550 12.263 12.319 1666.0 12.721 12.277 49.112 1756.3

FS/2 60 14.481 11.229 54.984 1420.8 13.383 12.894 26.220 1420.4
50 12.855 13.118 5.7078 1418.9 14.143 11.024 8.6295 1413.6
40 13.269 13.091 5.7363 1391.5 13.546 12.857 5.7249 1393.8
30 12.814 13.193 4.5500 1347.3 14.374 11.020 5.9205 1382.8

Ni/2 60 12.921 11.934 116.23 1744.2 12.536 12.184 167.11 1744.9
50 12.918 12.145 30.816 1704.9 12.821 12.158 38.850 1757.9
40 12.799 12.142 38.482 1640.2 12.606 11.635 114.92 1690.4
30 12.309 12.132 15.277 1589.1 12.811 11.736 152.64 1633.5

FS/3 60 11.231 11.362 46.225 1457.9 11.088 12.002 124.78 1473.3
50 11.452 11.548 72.635 1430.1 12.726 12.273 108.40 1421.4
40 11.832 11.222 3.6047 1390.6 11.543 12.100 9.2717 1420.4
30 11.842 12.329 0 1346.3 12.825 11.590 10.642 1387.7

bars of the stiffnesses, i.e. they are lower than 1.0% and comparable to or smaller than the size of
the symbols in figure 6. To estimate the error of the calculated parameters based on experimental
error sources, additional calculations varying the experimental resonance frequencies within the
width of the resonance peak have to be carried out. This is not considered in this work.

The average values of htip and θ and the scattering of the results including all measurements
on fused silica and on nickel are 12.5 ± 1.1 µm and 12.3 ± 0.8◦, respectively. Despite the
scattering of about 10% around the average values, the corresponding error values obtained
from the FEM calculations are always lower than 1.0%. In order to examine the influence of
htip and θ , in figure 5(a) group of curves of constant error function varying htip and θ in the
range from 8.0 to 16.5 µm and from 10.0 to 17.0◦, respectively, is shown. The calculations were
carried out with the experimental data of the first measurement on fused silica for increasing
static load for a static deflection of 60 nm, for which the contact stiffness values kS and kN of
7.78 and 1434.4 N m−1, respectively, were obtained. The results in figure 5 indicate that the
parameters htip and θ do not play a relevant role for the modeling of the cantilever vibration in
sample contact, when the geometrical parameters L, w1, w2 and t were previously determined
by the free cantilever vibrations. Increasing the inclination angle as well as the tip length causes
an increase of the lateral part in the tip–sample interaction forces during flexural cantilever
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Table 5. Resonance frequencies fBi(i = 1, 2, 3) of the first three bending
modes B1, B2 and B3 obtained by fitting the FEM model for the individual
measurements and the corresponding values of the error function.

Fitted frequencies for increasing static load Fitted frequencies for decreasing static load

Stat. defl. fB1 fB2 fB3 Error fB1 fB2 fB3 Error
(nm) (kHz) (kHz) (kHz) (%) (kHz) (kHz) (kHz) (%)

FS/1 60 651.61 1543.9 3097.7 0.19 651.64 1544.2 3095.8 0.17
50 650.51 1543.9 3088.7 0.12 650.82 1544.2 3098.2 0.26
40 648.08 1543.8 3078.6 0.10 648.62 1542.4 3080.6 0.01
30 647.00 1542.9 3074.9 0.28 647.01 1540.1 3078.1 0.11

Ni/1 60 670.31 1543.4 3158.5 0.40 670.93 1543.5 3162.3 0.37
50 671.06 1543.5 3145.7 0.17 672.18 1543.5 3148.2 0.11
40 668.61 1543.8 3145.0 0.30 670.43 1543.7 3156.2 0.39
30 664.52 1543.8 3128.5 0.19 668.61 1543.8 3144.4 0.37

FS/2 60 652.79 1542.7 3086.5 0.20 653.02 1543.5 3081.7 0.07
50 652.54 1543.7 3081.6 0.11 651.77 1542.9 3084.3 0.26
40 650.99 1543.3 3073.9 0.11 651.47 1543.4 3075.0 0.22
30 647.9 1536.0 3069.8 0.30 650.06 1542.7 3077.9 0.52

Ni/2 60 668.37 1543.6 3148.8 0.10 668.31 1543.7 3153.2 0.19
50 666.42 1543.6 3133.9 0.08 668.63 1543.7 3144.0 0.12
40 663.45 1543.5 3124.8 0.11 665.32 1543.6 3142.7 0.29
30 660.56 1543.8 3118.2 0.14 663.31 1543.5 3134.7 0.27

FS/3 60 652.58 1544.3 3110.7 0.41 653.57 1544.2 3115.1 0.42
50 651.08 1544.0 3104.5 0.28 652.24 1543.5 3095.7 0.09
40 648.72 1543.9 3092.5 0.19 650.84 1544 3095.3 0.18
30 646.74 1543.5 3080.5 0.14 649.47 1543.3 3084.4 0.13

vibrations, so that in tip–sample contact modeling the effect of an increasing inclination angle
can be compensated by decreasing the tip length and vice versa. That is, in future measurements
htip and θ can be assumed as fixed when using the same cantilever, and one single measurement
on a reference sample is sufficient to determine them without introducing a significant error in
the quantitative analysis.

5. Spring constant of the cantilever

After matching the experimental and the simulated resonance behavior of the cantilever by
the fitting procedure, the FEM model allows the calculation of the static spring constants
of the sensor. We simulated stepwise increasing static loads acting in different directions on
the cantilever at the tip position L tip. The spring constants were derived from the slopes of the
simulated load-displacement curves using the FEM values of the geometrical dimensions of the
cantilever listed in table 1, which were obtained from modeling the free cantilever vibrations.
The errors that may result from inaccuracies of the experimental free cantilever resonance
frequencies are not considered so far.

If the cantilever is not inclined (i.e. θ = 0◦), the static loads 1FX , 1FY and 1FZ are
applied parallel to the axes x ′, y′, and z′, respectively, of the coordinate system of the
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Figure 5. Plot of level curves of the error function as a function of htip and θ ,
varying from 8.0 to 16.5 µm and from 10.0 to 17.0◦, respectively.

cantilever. The corresponding spring constants ki obtained from the ratios 1Fi/1Ui (1Ui is
the displacement of the cantilever along the i-axis) are kx ′ = 2162.5 N m−1, ky ′ = 33.5 N m−1,
and kz ′ = 866.5 N m−1, respectively. Based on a beam model with averaged dimensions and
an isotropic elastic modulus, the manufacturer provides an estimated value ky ′ = 42 N m−1

for the normal spring constant of this particular cantilever. The FEM result is about 20%
lower.

Considering the previously obtained cantilever inclination of θ = 12.3◦ relative to the
X-axis, the spring constants must be recalculated if forces normal or parallel to the sample
surface are applied. In the coordinate system of the sample {XY Z}, we obtained the spring
constants kX = 320.3 N m−1, kY = 36.8 N m−1, and kZ = 866.5 N m−1. The vertical stiffness kY

increases by 9.85% relative to the case with zero inclination angle. A remarkable decrease of
the stiffness in longitudinal direction (X-axis) of about 85.2% is observed as well, whereas the
stiffness kz ′ = kZ remains because the z′- and Z-axis coincide.

6. Analysis of the tip–sample contact

Figure 7 shows the variation of the out-of-plane contact stiffness kN as a function of the static
cantilever force for the tip in contact with fused silica and nickel, as obtained by FEM fitting
(table 4). The static force FN was calculated using the normal force constant kY = 36.8 N m−1

multiplied with the static deflection of the cantilever. For both samples, the contact stiffness
increases with static load. The scattering of the fused silica data is lower than that of the nickel
data (1.4 and 3.5%, respectively), which can be attributed to the homogeneous and isotropic
properties as well as to the lower roughness of the fused silica sample.

In figure 7, the normal contact stiffness calculated with the Hertzian contact model [24]
is also plotted for comparison. A spherical sensor tip with a radius R of 80 nm was assumed.
The chosen value is of typical size and yields results close to the measured resonances, i.e.
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Figure 6. Static deflections UX , UY , and UZ of the cantilever in X-, Y- and
Z-direction, respectively, as function of applied load in directions along (a) and
(b) the X-axis, (c) and (d) the Y-axis and (e) and (f) the Z-axis. The plots (a),
(c) and (e) correspond to a cantilever–oriented parallel to the sample surface
(θ = 0), and (b), (d) and (f) belong to a cantilever inclined by an angle θ = 12.3◦.

shows the relation to the Hertzian model. As discussed in section 7, the subjects tip shape and
wear still need detailed investigation. According to the Derjaguin, Muller and Toropov (DMT)
model [24], the normal contact stiffness is given by

kN =
3
√

6RE∗2(FN + Fadh), (4)

where E∗ is the effective Young’s modulus of the contact and Fadh is the adhesion force.
In our AFAM experiments, care was taken to work with low adhesion forces (Fadh <

338 nN). In this context, low adhesion forces means forces small in comparison to the static
load on the cantilever, which is controlled by its static deflection adjusted before dynamic
measurements [9]. Therefore, the term Fadh was neglected, and equation (4) reduces to the Hertz
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Figure 7. Out-of-plane contact stiffness kN as a function of the static cantilever
force obtained by FEM modeling of the AFAM measurements on fused silica and
nickel presented in figure 4 and table 3. For comparison, the theoretical contact
stiffness on nickel (dashed line) and on fused silica (full line) calculated with the
Hertzian contact model is shown. A spherical sensor tip with a radius R of 80 nm
was assumed.

formula. The reduced Young’s modulus is 1/E∗
= (1 − ν2

Tip)/ETip + (1 − ν2
Surf)/ESurf in the case

of elastic isotropic materials, where νTip, νSurf, ETip and ESurf are the Poisson’s ratios and Young’s
moduli of the tip and the surface, respectively. In the case of elastic anisotropic materials and
special symmetries, the reduced Young’s modulus is given by 1/E∗

= 1/MTip + 1/MSurf, where
MTip and MSurf are the indentation moduli [9, 25, 26] of the tip and the surface, respectively.
The indentation moduli can be calculated from the elastic single-crystal constants of the
materials [9, 25, 26]. In the case examined here, only the fused silica sample is isotropic
(νFS = 0.17, EFS = 73.6 GPa;5 MFS = EFS/(1 − ν2

FS) = 75.8 GPa). The indentation moduli of the
silicon tip MTip = 165 GPa (single crystal, 100-oriented) [9] as well as of the 100-oriented nickel
single crystal, MNi = 219 GPa, were calculated using single crystal constants from the literature
(silicon: c11 = 166 GPa, c12 = 64 GPa, c44 = 80 GPa; nickel: c11 = 250 GPa, c12 = 160 GPa,
c44 = 118.5 GPa) [27, 28]. With these data and a tip radius R of 80 nm one obtains the two
curves in figure 7, which represent the upper and the lower limit of the experimental data. This
shows that the experimental contact stiffness values are in a reasonable range. However, the
difference in contact stiffness between the two samples is smaller than predicted by contact
mechanics, and the increase with static load is slower. The pressure in the tip–sample contact
area is high enough in AFAM to cause a fracture of the tip, especially in contact with the nickel
surface [29, 30]. A non-spherical tip shape, tip wear and the presence of oxide or contamination
layers on the tip and surface are only a few of the effects which may explain a deviation from
the theoretical Hertzian contact mechanics.

The experimental in-plane stiffness for fused silica is always lower than 150 N m−1, while
for nickel the maximum kS is lower than 200 N m−1. The stiffness ratio, kS/kN, is lower than
0.05 for fused silica and 0.07 for nickel. This result does not agree with the theoretical relation
2/36 kS/kN 6 18/19 following from contact mechanics [31]. The high spring constant along

5 MaTeck GmbH, Germany; fused silica plate SQ1, size 10 mm × 10 mm, thickness 1 mm.
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the longitudinal axis of the cantilever (X-axis), a combination of lateral and buckling stiffnesses,
produces a high in-plane force. Probably, the in-plane forces are so high that the tip starts to
slip on the surface sample. This has to be examined in more detail. For the FEM simulations
presented here, a very high elastic modulus was assigned to the elements of the tip in order to
avoid the unrealistic deformation of the tip-end due to external forces, i.e. a point load. A more
realistic FEM model considering the elasticity of the sensor tip in relation to its special structure
and the contact mechanics has to be developed.

Furthermore, to obtain precise quantitative measurements with AFAM, the wear of the
tip should be prevented by using wear-resistant layers like diamond and a strict control of the
ambient conditions [32] for the tip–sample contact should be maintained.

7. Summary and conclusions

In this work, AFAM measurements on fused silica and nickel single crystals were numerically
modeled by FEM to obtain the out-of-plane, kN, and in-plane, kS, contact stiffness values.
We developed an FEM model, which considers the main geometrical features of commercial
stiff cantilevers as well as the elastic anisotropy of silicon single crystals. We fitted this FEM
model to a commercially available cantilever in a two-step procedure using the free and
contact-resonances of the first and the third bending mode. With the FEM model presented
here, we were able to simulate the resonance frequencies of cantilevers more precisely than
even with advanced analytical models, which take into account the trapezoidal cross section of
the cantilever. The normal spring constant for a cantilever inclined relative to the sample surface
was determined by FEM. We used this spring constant value to calculate the static force from
the static cantilever deflection. The obtained normal contact stiffness values are within the range
covered by the theoretical values for nickel and for fused silica calculated with the Hertzian
contact model and a tip radius of 80 nm. The obtained in-plane surface stiffness values kS are
much too low compared with contact mechanics theories, that is, kS cannot be associated with
the reduced shear modulus of the contact. More likely, kS is related to tip–surface interactions
involving water layers and pollution adhered to the tip and the surface. In order to examine
the contact forces, especially the lateral forces, in more detail, a more realistic FEM model
considering the elasticity of the sensor tip and precise contact mechanics has to be developed.
Such a model is challenging, as it will have to cover two different length scales, the µm scale
of the cantilever, and the nm scale of the tip–sample contact region.
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Appendix A. Elastic constants of the cantilever in the Cartesian coordinate systemof the
cantilever geometry

In the generalized Hooke’s law, the second-order stress tensor σi j is connected with
the second-order strain tensor εkl by the linear transformation σi j = Ci jklεkl . The indices
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Table A.1. Relation of index pairs in the tensor notation to indices in the matrix
notation [33].

Tensor notation 11 22 33 23, 32 13, 31 12, 21
Matrix notation 1 2 3 4 5 6

i, j, k, l = 1, 2, 3, 4 describe a Cartesian coordinate system. The elastic constants Ci jkl form
a tensor of fourth order with 81 coefficients. The symmetry of stress and strain (σi j = σ j i ,
εkl = εlk) and the conservation law of energy reduce the number of independent coefficients
Ci jkl to 21 (Ci jkl = C j ikl = Ci jlk = Clki j ) allowing a matrix representation of the elasticity tensor.
Table A.1 relates the tensor and the matrix notation (e.g. [33]).

Material (e.g. single crystal) symmetry further reduces the number of independent elastic
constants. In the case of cubic symmetry, as e.g. for silicon single crystals, three coefficients,
C11, C12 and C44, remain forming the elasticity matrix Cνµ (ν, µ = 1, . . . , 6) [33]:

Cνµ =



C11 C12 C12

C12 C11 C12

C12 C12 C11

C44

C44

C44


. (A.1)

For the description of single-crystal silicon AFM cantilevers, a Cartesian coordinate system
is chosen with the 1(x)-, 2(y)- and 3(z)-axis in length, thickness and width direction of the
cantilever, which coincide with the single crystal directions [110], [001] and [11̄0], respectively.
This system is related to the single crystal system {[100], [010], [001]} by two rotations, of 45◦

around the z-axis and of 90◦ around the new x-axis.
Two Cartesian coordinate systems of different orientation, (x, y, z) and (x ′, y′, z′), are

related by a rotation matrix D, the elements of which ai j are the direction cosines of the new
axes, i.e. 

x ′

y′

z′

 =


a11 a12 a13

a21 a22 a23

a31 a32 a33


x

y
z

 . (A.2)
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For the elastic constants Ci jkl forming a fourth-order tensor, the rotation matrix D yields a
corresponding transformation matrix which, in matrix notation, is given by [34]

R =



a2
11 a2

12 a2
13 2a12a13 2a13a11 2a11a12

a2
21 a2

22 a2
23 2a22a23 2a23a21 2a21a22

a2
31 a2

32 a2
33 2a32a33 2a33a31 2a31a32

a21a31 a22a32 a23a33 a22a33 + a23a32 a21a33 + a23a31 a22a31 + a21a32

a31a11 a32a12 a33a13 a13a32 + a12a33 a13a31 + a11a33 a11a32 + a12a31

a11a21 a12a22 a13a23 a12a23 + a13a22 a13a21 + a11a23 a11a22 + a12a21


, (A.3)

C ′

νµ = RCνµ RT. (A.4)

These general equations yield the special results that are appropriate here

D45◦−90◦ =


cos 45◦ cos 315◦ cos 90◦

cos 270◦ cos 90◦ cos 0◦

cos 315◦ cos 225◦ cos 90◦

 =


1

√
2

1
√

2
0

0 0 1

1
√

2
−

1
√

2
0

 , (A.5)

R45◦−90◦ =



1
2

1
2 0 0 0 1

0 0 1 0 0 0

1
2

1
2 0 0 0 −1

0 0 0 −
1

√
2

1
√

2
0

1
2 −

1
2 0 0 0 0

0 0 0 1
√

2
1

√
2

0


, (A.6)

C ′

νµ =



1
2 (C11 + C12) + C44 C12

1
2 (C11 + C12) − C44

C12 C11 C12

1
2 (C11 + C12) − C44 C12

1
2 (C11 + C12) + C44

C44

1
2 (C11 − C12)

C44


. (A.7)
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Finally, with the elastic constants of single crystal silicon from [27, 28] C11 = 166 GPa, C12 =

64 GPa, C44 = 80 GPa, we obtain

C ′

νµ[GPa] =



195 64 35

64 166 64

35 64 195

80

51

80


. (A.8 )

In engineering, instead of the elastic constants C′

νµ, Young’s and shear moduli E′ and G′ and
Poisson’s ratio ν ′ are used, which are related to the compliance matrix C′

νµ
−1 by [35]:

C ′

νµ
−1

=



1

E ′
x

−
ν ′

yx

E ′
y

−
ν ′

zx

E ′
z

−
ν ′

xy

E ′
x

1

E ′
y

−
ν ′

zy

E ′
z

−
ν ′

xz

E ′
x

−
ν ′

yz

E ′
y

1

E ′
z

1

G ′
yz

1

G ′
xz

1

G ′
xy



. (A.9)

From equation (A.7) the compliance matrix C′

νµ
−1 follows as

C ′−1
νµ =



Cden + 2C11C44

4C44Cden
−

C12

Cden
−

Cden − 2C11C44

4C44Cden

−
C12

Cden

C11 + C12

Cden
−

C12

Cden

−
Cden − 2C11C44

4C44Cden
−

C12

Cden

Cden + 2C11C44

4C44Cden

1

C44

2

C11 − C12

1

C44



, (A.10)
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Table A.2. Elastic constants of the used single-crystal silicon AFM cantilever.

Young’s moduli (GPa) E ′
x = 169.7 E ′

y = 130.4 E ′
z = 169.7

Shear moduli (GPa) G ′
xy = 80 G ′

yz = 80 G ′
xz = 51

Poisson’s ratio ν ′
xz = ν ′

zx = 0.061 ν ′
xy = ν ′

zy = 0.362 ν ′
yx = ν ′

yz = 0.278

Cden = C2
11 + C11C12 − 2C2

12. (A.11)

The final results used in the numerical simulations are shown in table A.2.

Appendix B. Torsional stiffness of a beam with constant trapezoidal cross section

The torsional stiffness of a beam with constant cross section of trapezoidal symmetry can be
derived approximately from the strain energy of the twisted beam [23]. We describe the beam
in a Cartesian coordinate system with the x-axis in length direction and the cross section in the
y–z-plane (figure B.1).

The shear stresses σyx and σzx acting in the cross section of the beam are the spatial
derivatives of a so-called stress function φ(y, z):

∂φ(y, z)

∂y
= σyx(y, z),

∂φ(y, z)

∂z
= σzx(y, z). (B.1)

In general, the stress function φ(y, z) can be represented by an infinite polynomial series in
its variables y and z. Additionally, φ(y, z) has to be zero at the boundaries of the beam, i.e. at
y = h or y = 0 and z = ±(b–(b–a)y/h). The boundary conditions are satisfied by the special
polynomial

φb(y, z) =

(
z −

b − a

h
y + b

) (
z +

b − a

h
y − b

)
(y − h) y, (B.2)

and thus, the stress function can be presented in the general form

φ(y, z) = φb(y, z)
∑

n=1,2,...

∑
m=1,2,...

amnzm yn. (B.3)

The coefficients amn (m, n = 0, 1, 2, . . .) follow from the strain energy, which for the anisotropic
twisted beam is given by

U =

∫ b

−b

∫ h

0

{
1

2

[
1

G ′
xy

(
∂φ(y, z)

∂z

)2

+
1

G ′
xz

(
∂φ(y, z)

∂y

)2

− 2τφ(y, z)

]
dy dz

}
. (B.4)

Here, G ′

ij are the elastic shear moduli of the cantilever beam in its geometric coordinate system
(see appendix A) and τ is the angle of the rotation per unit length. The energy has to fulfil the
variational principle δU/δφ = 0, entailing the conditions δU/δamn = 0 for each amn, because
polynomials form an orthogonal system. This yields a system of equations determining the
coefficients amn. Because of the symmetry in the z-direction (see figure B.1), only even powers
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Figure B.1. Schematic of the cross section of a beam with trapezoidal symmetry.

of z may occur, and because of the finite extent of the cross section, only a limited number of
terms have to be taken into account depending on the required accuracy. In the case presented
here, we found out that the terms up to sixth order in the spatial coordinates, i.e. 15 coefficients,
are sufficient within the numerical accuracy we were able to achieve.

Finally, the torque M and the torsional stiffness are given by

M = 2
∫ b

−b

∫ h

0
φ(y, z)dy dz and Ct =

M

τ
, (B.5)

respectively.
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