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Vanoscopigfimaging of Sthgle-walled"Carbon NanOtubes

A possibility to not only visualize but to locally
probe a chemical structure, composition, conforma-
tional state and stresses on the nanoscale has stim-
ulated the development of apertureless near-field
vibrational spectroscopy and imaging with ultra-
high spatial resolution laying beyond the diffrac-
tion limit [1-3]. It has become possible due to the
delocalization of evanescent waves (near-field) ex-
isting in the proximity of nano-sized objects with a
sharp metal probe.
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A considerable progress in nanoscopic
imaging has been achieved with a laser-
illuminated pointed metal tip allowing us
to improve spatial resolution and in-
crease the field-enhancement [4-7]. This

is caused by the geometric singularity of

sharply pointed metal probes (lightning
rod effect) and surface plasmon reso-
nances, which depend on both the exci-
tation wavelength and tip geometry. In
this respect, highly confined electromag-
netic fields at the tip apex can be used to

locally explore light-matter interactions.
This paper demonstrates some advances
of tip-enhanced Raman spectroscopy and
nanoscopic imaging of single-walled car-
bon nanotubes (SWCNTs).

Experimental Details

In our studies we used a commercial
available scanning near-field optical na-
noscope NTEGRA SPECTRA (NT-MDT,
Russia), whose general view is schemati-
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Fig. 1: A schematic layout of the scanning near-field optical spectrometer.



cally shown in figure 1. A
632.8 nm linearly-polarized
laser light is transmitted by a
laser line filter and a beam ex-
pander, reflected by an edge-
filter and goes into the in-
verted optical microscope
through a beamsplitter and a
pinhole. A 100 x oil immersion
objective (N.A.=1.3) locuses
the laser beam into a spot with
the size of less than 300 nm
and with a power of ~100 pW
at a sample. A gold tip is held
in the constant height mode of
~3 nm by means of the shear-
force feedback mechanism. In
order to produce the desired
field enhancement at the tip
apex, one should couple the
tip with one of two longitudi-
nal field lobes (for a Gaussian
beam) located at rims of the
diffraction limited laser spot.
A near-field optical image is
produced by raster scanning
the sample with x, y stage and
maintaining the tip fixed in re-
spect to the longitudinal lobe.
Scattered and reflected light is
collected with the same objec-
tive and directed back, through
the pinhole and the beamsplit-
ter, into a photomultiplier and
a thermoelectrically cooled
charge-coupled detector. Ra-
man spectra were recorded

within a spectral range of

150-3000 cm™! with the spec-
tral resolution better than 15
cm™'.  Acquisition was
500 ms per image pixel. As a
probe we used a high-purity
(99.998%) gold drawn wire
electrochemically etched in a
mixture of HCI/Ethanol to an
end diameter of ~20 nm [8].
Figure 2 shows a data set ac-
quired from the sample con-
taining a dispersion of large
SWCNTs bundles: A — atomic
force microscopy (AFM) im-
age, B — confocal optical im-
age, C - confocal far-field Ra-
man image (~1587cm™).
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Enhanced Spectroscopy and

means of Raman active modes
along carbon nanotubes,
namely: the radial breathing
mode (RBM) (100-300 em™);
disorder-induced D  band
(~1310 em™!) and its first over-
tone D* (~2606 cm™); G*
(~1587 cm™') and G band
(~1559 em!). Raman spectra
of a small SWCNTs bundle
when a tip is landed to and re-
tracted from the sample are
depicted in figure 3. From the
data acquired we can estimate
the field enhancement factor,

SCANNING PROBE MICROSCOPY ﬁﬁ

calculated as an area-cor-
rected ratio of near- and far-
field intensities, for mentioned
above bands: ~9750 (RBM),
~7500 (D band) and ~9750 (D*
band), ~9000 (G* band) and
~10500 (G- band). Thus, Ra-
man enhancements are non-
uniform for various spectral
lines as reported earlier [9,10].
A noticeable pedestal within
the range of 200-2200 em™ is
caused by back-scattered light
from the tip. A topographic
AFM image of a SWCNTSs bun-
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dle on glass and its cross sec-
tion, taken along a white solid
straight are shown in figure 4
(a,b). As seen from the figure,
the lateral resolution is of ~90
nm which is obviously caused
by the convolution of the ~50
nm tip apex with the SWCN''s
bundle under study. By height
of the cross section of the lat-
ter (fig. 4b), we can presume
that this bundle is composed
of at least two carbon nano-
tubes. The same is followed by
the complex structure of the
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In this section we consider the
main characteristics of tip-
based nanoscopic imaging
such as spatial resolution and
field-enhancement factor by
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Fig. 3: Raman spectra of a SWCNTs bundle when the gold tip is landed and

retracted to and from the sample.

RBM band around ~258 em™ (fig. 3) by
which we can identify the carbon nano-
tubes and then determine their structure.
In figure 4c we show a tip-enhanced near-
lleld Raman mapping of the same carbon
nanotubes bundle made with the ~20 nm
end diameter tip driven by the shear-force
regulation. The cross section along the
white solid straight on this map indicates
the spatial resolution attained with the
optical method to be ~50 nm (fig. 4d). It
follows from figure 4 that topographic and
near-field images are closely correlated
and carbon nanotubes can be easily iden-
tified due to chemically specific feature of
the optical method. However, the distribu-
tion of intensity of the tip-enhanced Ra-
man signal along the carbon nanotubes
bundle does not scale with its topographic
height. This is explained by the fact that
carbon nanotubes are twisted and form a
bundle consisting of a varying number of
single nanotubes. On the other hand, this
might be understood in terms of reso-
nance Raman scattering, since some nan-
otubes are non-resonant at 632.8nm. Fi-
nally, we can see that the tip-based
near-field technique allows one to avoid
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Fig. 4: AFM image (a) and tip-enhanced Raman image of the SWCNTs

bundle (c) (1594 cm™). (b) and (d) are their cross sections taken along a
white straight lines, respectively.

averaging of the Raman spectrum origi-
nating from the whole SWCNTs bundle
and, therefore, locally probe fine struc-
tural features with ultrahigh spatial reso-
lution in a nondestructive way.

Conclusion

[n this paper we have illustrated power
of tip-enhanced Raman spectroscopy and
nanoscopic imaging of carbon nanotubes
by achieving the field-enhancement fac-
tor up to ~10* and the spatial resolution
down to ~50 nm, respectively. In further
development of the tip-based near-field
technique, a special attention should be
given to the production of nanoscale
probes that not only can produce highly
enhanced electromagnetic fields, but
could also be used in a wide variety of
sample environments.
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