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Abstract. A computer analysis of MFM images of separate ferromagnetic single-domain 
nanoparticles placed on a nonmagnetic substrate was carried out. The shape of an MFM tip and 
the trajectory of its movement were taken into account. The aureoles were found in the magnetic 
contrast of MFM images simulated for the lifting mode. The conditions and the reasons of the 
appearance of these aureoles were discussed. 

INTRODUCTION 

Recently a special attention is paid to investigating the properties of ferromagnetic 
nanoparticles because there is a possibility to create recording and storing devices of 
new generation on their basis [1, 2]. Methods of scanning probe microscopy are be 
used more often to study such objects. To use a tip with a magnetic covering or a tip 
consisting  entirely of a magnetic material in magnetic force microscopy (MFM) 
enables to determine the magnetization distribution in different ferromagnetic micro- 
and nanostructures and also to study features of magnetization and magnetic reversal 
in these objects. 

However, the interaction between a magnetic tip and a magnetic field created by 
surface structures is rather complex. Therefore it is often difficult to explain 
experimental MFM data. Special complexities occur in cases when samples with a 
rather developed relief are studied. Samples with separate ferromagnetic nanoparticles 
formed on a nonmagnetic substrate can be considered as such an object of 
investigation. 

In this work a method of computer analysis developed earlier is applied to study the 
influence of the features of the tip movement on the formation of MFM images of 
ferromagnetic single-domain nanoparticles. 

PROCEDURE OF THE SIMULATION OF MFM IMAGES 

The magnetic force microscope functions on the basis of registering the interaction 
between the magnetic tip and the magnetic field created by surface ferromagnetic 
structures [3-6]. To increase the sensitivity the oscillating mode of the microscope is 
widely used. In this mode a cantilever is put into forced oscillations on its 
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eigenfrequency. In this case the changes of the following parameters of oscillations are 
registered: an amplitude, a frequency or an initial phase. Due to the of high sensitivity 
of a phase-detecting apparatus the registration of the phase shift is used more often. 
These changes are caused by the interaction between the tip and nonuniform magnetic 
field created by ferromagnetic structures of a sample. That is why an MFM image 
contains information about the distribution of magnetization in a sample. 

In the case of small oscillations and weak interactions the following expression 
holds [7]: 
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where ∆ φ is the phase shift due to the influence of magnetic forces, Q is the quality 
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the Z component of the magnetic force gradient acting on the MFM tip in the given 
point of the spatial location of the tip. According to Eq. (1), the phase shift is 
proportional to the magnetic force gradient, so it is enough to calculate the gradient 
values in every point of the tip location over the investigated surface where the tip is 
situated during scanning. A two-dimensional matrix of the calculated values of the 
gradient represents the simulated MFM image. 

The computation of the gradient was carried out in the frames of the magnetostatic 
model. It is considered that an external magnetic field created by the tip does not 
influence the sample magnetization, and vice versa. The magnetization structure of the 
tip and the sample depends on the geometry, magnetic properties and magnetic 
prehistory of each object and can be calculated in terms of the micromagnetic theory 
[8, 9]. To calculate the gradient, magnetic capacities of the tip and the sample are 
divided into physically small areas. Every area is approximated by a point magnetic 
dipole the direction of which depends on the local magnetization structure and its 
magnitude is chosen for reasons of magnetic saturation and uniform magnetization of 
each local area. In this case, the gradient in the point r is calculated according to the 
following expression: 
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where mt
i is the i-th magnetic dipole of the tip, Hz

ij is the Z component of the magnetic 
field, created by the j-th magnetic dipole of the sample in the point of spatial location 
of the i-th dipole of the tip, rt

i and rs
j are the coordinates of the corresponding 

magnetic dipoles in the systems of coordinates concerned with the corresponding 
objects. It is convenient to carry out the calculations when the system of coordinates of 
r is connected with the sample. 

The described algorithm underlied the software recently developed by the authors 
of the present paper to simulate MFM images of different ferromagnetic structures 
with known geometrical parameters and magnetization structure. This software allows 
one to take into account the real shape of the tip and the sample structures, and also to 
use the magnetization structures of both objects calculated with the micromagnetic 
theory beforehand. This software was successfully tested in theoretical and 
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experimental investigations of different ferromagnetic micro- and nanostructures 
which were carried out earlier [10-12]. 

The process of scanning is modeled by the virtual displacement of the tip relative to 
the sample according to the trajectory of its movement. The virtual displacement of 
the tip consists in the changing of all relative coordinates of all local dipoles of the tip 
in the coordinate system connected with the sample. The changes of X and Y 
components of the spatial coordinates are accomplished step-by-step to form the 
image. The step-by-step change of Z coordinates of the dipoles depends on the 
features of the trajectory of the tip movement during scanning. It is especially 
important to take into account these features for the analysis of MFM images of relief 
objects. 

The tip lifts up on a certain distance over the sample surface and moves not 
touching the surface in order that only magnetic interactions influence the formation 
of an MFM image. In practice, two modes of the tip motion are often used: the mode 
of the constant distance and the lifting mode. The latter is widely used in scanning 
probe microscopes made by Digital Instruments (USA) and by Nanotechnology-MDT 
(Russia). In the first case the tip lifts up on the prescribed distance and this Z position 
remains constant during all scanning. The trajectory of the tip movement can be 
described by a plane in this case. In the lifting mode the tip scans the same line of the 
image twice. At first the tip touches the surface and the line of the surface relief is 
registered. This profile is memorized in the control device. Then the tip lifts up and 
moves according to this profile not touching the surface and the main interaction 
becomes to be magnetic. In this case the trajectory of the tip movement differs from 
the plane and depends both on the real topography of the surface an on the shape of 
the MFM tip. Besides, if the surface has a developed relief, it is necessary to take into 
account the features of the formation of a topography image, because it will be 
distorted by the convolution effect of the real topography of the surface and the tip 
shape [13-15]. 

Due to the difference in trajectories of the tip movement in the described modes of 
scanning, the images obtained in these modes concur only for flat samples. If the 
surface has an essential relief, the images obtained in the different modes differ. It is 
due to the long-distance character of the magnetic interaction, in other words, its 
magnitude falls down only on a rather large distance comparable with geometrical 
parameters of the MFM tip and with typical sizes of scan areas (about several tens of 
nanometers). 

Both modes of the tip moving can be taken into account in the developed software. 
The distortions of a topography image caused by the convolution effect can also be 
taken into consideration. This fact allows us to provide a computer comparative 
analysis of an influence of trajectory of the tip motion during scanning on the 
formation of MFM images of the relief surface with separate ferromagnetic 
nanoobjects. 
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COMPUTER EXPERIMENT AND DISCUSSION OF RESULTS 

The computer experiment was carried out to study of the influence of the features 
of the tip motion during scanning on the formation of MFM images of relief 
nanoobjects. A separate ferromagnetic nanoparticle in a uniformly magnetized state 
formed on a nonmagnetic substrate was taken as an object of research. The shape of 
the particle was taken to be cylinderical (Fig. 1a,c) 100 nm in the height and 50 nm in 
the radius. The specific magnetization was taken to be equal to 490 Oe/cm3 as for 
nickel. The total magnetic moment of the particle was directed along the surface or 
perpendicularly to the axis of the symmetry of the tip (Fig. 1a). 

 

 
Figure 1. Models of a ferromagnetic nanoparticle and an MFM tip. a – the geometrical shapes and the 
structures of magnetization of the tip and the particle; b – the profiles: 1 – of the topography of the 
sample surface, 2 – of the trajectory of the tip movement in the lifting mode, 3 – of the trajectory of the 
tip movement in the constant distance mode; c – the top view of the topography of the sample surface 
with the nanoparticle; d – the simulated image of the topography presented in c distorted by the 
convolution effect. 

 
The tip was approximated by a nonmagnetic truncated cone with the convergence 

angle of 30º. The apex of the cone was made round with the rounding radius of 20 nm 
(Fig. 1a). This nonmagnetic part of the tip was covered evenly by thin ferromagnetic 
coating with the thickness of 50 nm and the specific magnetization of 1700 Oe/cm3. 
To simplify the following calculations it was supposed that the tip was also uniformly 
magnetized along its axis of symmetry. This model of the tip rather well describes tips 
widely used in real MFM experiments. Since the magnetic interaction strongly 
decreases as the distance between interacting objects increases, one can reliably 
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consider that only a comparatively small part of the apex of the tip takes part in the 
formation of an MFM image. According to the results obtained in Ref. [11], it is 
enough to take the height of the nonmagnetic part of the tip to be equal to 200 nm for 
correct modeling. The simulation of MFM images was carried out in terms of the 
described techniques. For the calculations the magnetic part of the tip was divided into 
4842 local magnetic dipoles and the nanoparticle consisted of 800 dipoles. 

Two runs of MFM images for two modes of the tip motion were obtained. The 
MFM images were simulated for different distances between the tip and the sample 
surface in each run. The first lot of the images was obtained for the constant-distance 
mode with changing of this distance hz (Fig. 1b). These images for several values of hz 
are presented in Fig. 4. Every MFM image contains the information about the 
existence of two magnetic poles of the nanoparticle and about their location. In 
workmanlike manner the presented images weakly differ from the results of 
simulation carried out with such objects under the assumption that the tip was 
approximated by a point magnetic dipole [10]. The analysis of the images obtained for 
the different values of the distance hz (Fig. 2) confirmed the obvious conclusion that 
the resolution and the sensitivity of MFM decrease, as the distance between the tip and 
the sample surface increases. 

 

 
Figure 2.  MFM images simulated for the constant-distance mode for different values of this distance 
hz. These values were the following: a – 140 nm; b – 160 nm; c – 180 nm; d – 200 nm; e – 220 nm; f – 
240 nm. The color scale represents different magnitudes of the force gradient of the magnetic 
interactions acting between the tip and the magnetic field created by the nanoparticle. This gradient was 
taken with the opposite sign according to Eq. (1). 
 

The second lot of the MFM images was simulated for the lifting mode of the tip 
motion for different lifting distances hc (Fig. 1b). Several obtained MFM images are 
presented in Fig. 3. These images differ in a workmanlike manner from the images 
obtained for the constant-distance mode. It is obvious that the more complex 
movement of the tip influences the formation of an MFM image, thereby this motion 
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complicates the image. It is necessary to note that the magnetic contrast from the 
particle which was observed on the images exceeds a topography image of the 
nanoparticle. If the lifting distance was essentially smaller than the nanoparticle 
height, the magnetic contrast which described the magnetic poles at the edges of the 
object acquired a more complicated character, namely, the areas of the anticontrast 
arose. This area of anticontrast looked like aureoles (Fig. 3a,b). If the lifting distance 
increases, the aureoles disappear, and at lifting distances large enough the images 
obtained for the lifting mode and for the constant-distance mode begin to acquire the 
analogous character. 

 

 
Figure 3.  MFM images obtained for the lifting mode for different values of the lifting distance hc. 
These values were the following: a – 40 nm; b – 60 nm; c – 80 nm; d – 100 nm; e – 120 nm; f – 140 nm. 
The color scale represents different magnitudes of the force gradient of the magnetic interactions acting 
between the tip and the magnetic field created by the nanoparticle. This gradient was taken with the 
opposite sign according to Eq. (1). The arrows highlight the aureoles. 

 
We suppose that the origin of these aureoles is as follows. If the lifting distance is 

less than the height of the particle, the apex of the tip is situated below the level of this 
height a the tip approaches the particle (Fig. 1b). As a result some part of the local 
dipoles of the tip and the local dipoles of the sample begin to interact with the sign 
which is opposite to that of the most part of the interactions which are contained in 
sum (2). These "negatively" interacting dipoles are situated closer than the "positively" 
interacting ones. The number of "negatively" interacting dipoles decreases as the 
lifting distance increases. That is why the aureoles can be observed only for the 
limited range of the lifting distances. The higher limit of this range depends on the 
shape of the tip and of the nanoobject and also on the structure of their magnetization. 

The aureole appearance was observed in real MFM experiments carried out with 
the samples containing separate nickel nanoparticles formed on the surface of silicon 
dioxide [10]. Fig. 4 presents an MFM image of nickel nanoparticles obtained in the 
lifting mode in the presence of a small additional magnetic field directed along the 
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sample surface. It can seen that the magnetic contrasts of some single-domain particles 
contain aureoles. The quantitative discrepancies of the observable behavior of the 
aureoles and the results of this computer modeling can be probably explained by the 
necessity to take into account the shape of a tip and a nanoparticle much closer to the 
reality and also by the mutual influence of magnetizations of the tip and of the 
nanopaticle. 

 

 
Figure 4.  MFM image (a) and the topography (b) of an area of a sample with separate nickel 
nanoparticles formed on the silicon dioxide surface. 

CONCLUSION 

MFM images of relief ferromagnetic nanobjects (nanoparticles) taking into account 
shapes of the MFM tip and nanoobject, the trajectory of the tip movement in the lifting 
mode and the convolution effect were simulated for the first time. The comparative 
analysis of MFM images of uniformly magnetized nanoparticles was carried out for 
the constant-distance and lifting modes. The aureoles on the magnetic contrast in 
images obtained in the lifting mode, when the lifting distance was rather small, was 
clearly discernible. The appearance of the aureoles was explained by the existence of 
the "negative" interaction between the tip and the nanoparticle when the tip 
approaches the nanoparticle. The results of the computer analysis coincide in a 
workmanlike manner with the experimental data on the MFM investigation of 
ferromagnetic single-domain nickel nanoparticles. 
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