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Abstract— Atomic Force Microscopy (AFM) has excellent 

potential ability for quantitative electrostatic measurements of 

surface potential and dielectric permittivity of materials with 

nanoscale resolution. Implementation of this ability, however, 

requires overcoming several challenges. The first task is 

developing an accurate computational model for electrostatic 

tip-sample interaction; the second - efficient instrumentation 

and a control system that supports the measurements. An 

analytical model of nanoscale tip-sample capacitance on thin 

dielectric films was introduced (Gomila, Toset, and Fumagalli, 

2008). This model allows describing the electrostatic tip-sample 

interaction force in a form suitable for the AFM dynamic 

control model (Belikov, Magonov, 2009). This dynamic model 

contains integrals over the tip-sample forces that can be 

presented in a closed form for the Gomila-Toset-Fumagalli 

analytical model. These results allow for developing very 

efficient electrostatic AFM computational model. As for the 

second task (instrumentation and control), the above 

mentioned AFM dynamic model with (amplitude-phase) state 

variables can be used for the control system design that 

combines mechanical Amplitude Modulation mode and 

consequent electrical modulation of the mechanical phase 

cosine. The cosine is monitored by lock-in amplifiers at the 

electrical modulation frequency, and twice that frequency; 

surface potential and dielectric permittivity of the sample can 

then be mapped. This paper presents the model derivation, 

description of instrumentation and control schematics, and 

their implementation on NT-MDT microscopes. Results are 

illustrated with practical measurements on different materials. 

I. INTRODUCTION 

Local electrostatic force measurements in atomic 

force microscopy (AFM) have been introduced in 1988 [1]. 

Initially, Kelvin force microscopy (KFM) [2] was developed 

and it became an extension of macroscopic Kelvin probe 

measurements to small scale studies of different materials. 

The capacitance gradient dC/dZ can be also determined from 

electrostatic force studies by detecting the force response on 

the 2
nd

 harmonic of the frequency of electric field excitation. 

This response has been utilized for mapping the local 

dielectric changes in a number of AFM-related methods [3-

5], which were applied to semiconductor surfaces, thin 

organic films and water adsorbates on different surfaces. 

Recently, with broad development of multi-frequency 

techniques, KFM and dC/dZ mapping were expanded to 

studies of surface potential and dielectric permittivity of 

various materials and in different environments [6]. 

Enhanced sensitivity and high spatial resolution of the 

surface potential and capacitance gradient mapping have 

been demonstrated for semiconductors, metals, organic 
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materials and polymers. Recent results demonstrated that 

local electrical measurements are useful for compositional 

imaging of multi-component samples [7]. They essentially 

complement the similar applications of nanomechanical 

AFM studies. A more challenging task is the quantitative 

analysis of surface potential and dielectric data with the 

latter offering unique information about local molecular 

motion through studies at different frequencies and various 

temperatures. This capability led to increasing interest in the 

local dielectric studies of polymer samples in an attempt to 

bring dielectric spectroscopy to the sub-micron scale. Here 

we present an approach to a control system for extraction of 

quantitative dielectric permittivity from AFM electrostatic 

measurements on thin polymer films. 

II. BACKGROUND 

A. Background of AFM Asymptotic Dynamic and Quasi-

Static Models 

Asymptotic differential equations for the AFM 

mechanical dynamic modes such as Amplitude Modulation 

(AM) and Frequency Modulation (FM) were derived and 

studied in [8]. The full dynamic equations are presented in 

[8] and [9, formula (1)]. In this paper, however, we will need 

only the equations for steady state amplitude and phase, and 

conservative (i.e. with no dissipation) electrostatic tip-

sample interaction forces. For the AM mode these quasi-

static equations are the following [8] 
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where A and   are the steady state amplitude and phase of 

the AFM oscillation at the 1
st
 eigenvalue frequency of the 

cantilever (in AM AFM mode A is kept near the set point 

amplitude under z servo feedback control); 

A0 is the free oscillation amplitude at the 1
st
 resonance of the 

cantilever; 

Q1 is the quality factor of the cantilever at its first resonance; 

k is the spring constant of the cantilever; 

Zc is the central position of the oscillating tip (i.e. height –

controlled by z-servo); 

and Fz is the z-projection of tip-sample interaction force. 

Ref. [9] describes mechanical (elasto-adhesive) force 

modeling, while electrostatic models and their use in design 

of control system for electrostatic measurements is the main 

topic of this paper. The quasi-static model (1) is adequate for 

developing the quantitative measurements of this paper. The 
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full dynamic model, however, has a potential to significantly 

improve feedback control of dynamic AFM modes classified 

in [8,9]. 

B. Background of Lock-In Amplifiers used with AFM 

In AM mode the amplitude A and phase  of (1) can be 

detected by Lock-in Amplifiers. Functionally, Lock-in 

amplifiers measure the input signal at a specified reference 

frequency R using the reference signal AR sin(Rt+R) with 

reference amplitude AR, frequency R and phase R. The 

Lock-in outputs the following components of the monitored 

harmonics Asin(Rt+) of the input signal: 
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In this paper three Lock-ins will be used (Fig. 2):  

1) “Lock-in m” monitors the measured deflection of the 

oscillating cantilever at its first mechanical resonance 

frequency m 

2) “Lock-in e” monitors the electrically modulated input at 

the frequency of electrical excitation e that will be defined 

later in the paper 

3) “Lock-in 2e” monitors the input at 2e, as explained 

later. 

C. Background of Electrostatic AFM Modeling 

The electrostatic AFM setting is shown in Fig. 1 [10]. In 

[10] the following formula for nanoscale capacitance with 

thin dielectric film was presented 
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Notations in (3) and their SI units in the brackets are the 

following: 

Capex[F] is the capacitance between the tip and the substrate; 

0[F/m] is the vacuum dielectric constant 

r[1] is the relative dielectric permittivity of the film (used in 

Eq.(4)); 

h[m] is the thickness of the film (used in Eq.(4)); 

z[m] is the apex-film separation distance; 

R[m] is the effective apex radius; 

0[degree or rad] is the cone angle of the tip; 

 0sin1
~

 RR ; 

rhp /                                                (4) 

is the parameter that plays an important role in further 

development (p can be estimated from electrostatic 

measurements, but h should be measured independently to 

calculate εr); 

C0[F] is not important because in what follows we’ll need 

only derivatives over z and this term does not depend on z. 

Although derived empirically, formula (3) was validated 

in [10] with Finite Elements simulation and “demonstrated 

that the model is extremely accurate in a broad range of 

parameter values, including apex-film distance z from 

contact to 100nm, film thickness h from 1nm to 100nm, 

relative dielectric constant r from 1 to 100, apex radius R 

from 30 to 200nm, and cone angles 0 from 10

 to 45


.” 

With such a validation, formula (3) can be used for accurate 

analytical system development. 

According to [10-11], only Capex contribution depends on 

local material properties. As described in [11], another, long-

range, contribution, called Cstray, is linear in z. This fact 

allows us to completely neglect this contribution if we use 

second derivative of the total capacitance or equivalent 

operator described later in the paper that eliminates the 

linear component. 

The z-component of the electrostatic force acting on the 

tip and measured by AFM (assuming the cantilever spring 

constant is known) relates to the capacitance by the well-

known formula from electrostatics: 
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where U is the voltage applied between the metallic tip and 

conductive substrate. 

D. Background of Kelvin Force Microscopy (KFM) 

According to this method, an alternating low-frequency 

voltage U(t) = Udc +Uaccoset is applied between the tip and 

the substrate. Then, assuming Capex in (5) does not depend on 

applied voltage,  

  zFz                                                                       (6) 

  









22

1
2

ac2

dcapex

U
UzC                   (6, dc) 

  tUUzC ecosacdcapex
                   (6, e) 

  tUzC e2cos
4

1 2

acapex
                (6, 2e) 

The DC component (6, dc) of the measured force signal is 

difficult to separate from the background noise. However, 

Lock-ins can accurately detect e and 2e components.  

The DC component Udc of U(t) in (6, e) is the difference 

between the voltage Utip applied to the tip and the local 

 
Fig. 1.  A sketch of electrostatic set-up in AFM [10]. 

 

 

3229



  

surface potential Usample (e.g. due to local dipole distribution 

or surface charges). Nullifying Udc, i.e. the amplitude of e-

harmonics   by varying Utip, the local surface potential can 

be measured: 

nullified is amplitude when , etipsample UU      (7) 

According to (6), 2e amplitude is proportional to 

dCapex/dz and can be used to derive the dielectric properties 

of the sample, e.g. permittivity r. Formula (3) is of great 

value for the derivation described in Section III.B. 

III. MODELING AND CONTROL SYSTEM 

A. Diagram of AFM Control System for Electrostatic 

Measurements 

The diagram is shown in Fig. 2. All drive signals (“AC 

Drive”, “Uac Drive” and the references to the three Lock-ins) 

must be synchronized. To achieve this they are generated by 

direct digital synthesis in the same FPGA with the same 

clock source. “AC Drive” is also the reference to “Lock-in 

m”, and “Uac Drive” is also the reference to “Lock-in e”. 

Digital Phase Shifters are used for initial manual tuning to 

nullify the in-phase X (m) and quadrature Y (e) 

components of corresponding Lock-ins. 

The m-phase shifter is tuned when the cantilever is at 

free oscillation at or near its resonance frequency far from 

the surface so there is neither mechanical nor electrostatic 

interaction. In this case θ = m  /2 after the tuning. 

 The e-phase shifter is tuned after the tip is engaged and 

Tip Bias Voltage applied. Because we do not know the 

surface potential of an unknown sample, and therefore do 

not know if the potential difference between tip and sample 

is positive or negative, a bias Udc = Utip  Usample 

significantly larger than the maximum expected difference is 

applied during the phase adjustment process. The e-phase 

shifter is tuned to maximize the X component of “Lock-in 

e” with the large fixed Udc value.  

Now, after tuning, the e-modulated X component of 

“Lock-in m” Acos(θ) is the input to “Lock-in e”. Its X 

component (that can be positive or negative) is the error 

input to the “KFM Servo” that nullifies it by controlling Utip 

(“DC Servo”). According to Eq. (6, e) and (7), in this case 

Utip provides the value of the surface potential. 

Without the “Tip Bias Voltage”, the diagram of Fig. 2 is a 

typical AM AFM mode. The cantilever is vibrating at its 

mechanical resonance frequency m by “AC Drive m”. 

“AC Deflection”, measured by the “Photo Detector” is 

locked in at the frequency m. “Lock-in m” outputs the 

amplitude A and phase θ modeled by Eq. (1). Amplitude A is 

an input to the “Z Servo” that is tracking a given set-point 

amplitude. For a steady-state amplitude A, corresponding 

steady-state phase can be calculated by the first equation of 

(1). For the best electrostatic performance A should be as 

close to A0 as possible to minimize mechanical force but still 

must track the topography of the sample. In this case m/2 

(subscript m indicates that this is mechanical phase that is 

not electrically modulated). 

When electrically modulated “Tip Bias Voltage” is 

applied, phase    tt em    and    tt e cos , 

because m/2. This shows that phase cosine change is due 

to the electrical modulation, and we can use components of 

the cos(t) in further derivations of dielectric permittivity. 

From the second equation of (1) and (6, e), (6, 2e), the e 

and 2e amplitudes of the phase cosines are the following: 
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Statement 1 in the Appendix proves that the integral in (8) 

and (9) is non-negative, and so the right parts are valid 

expressions for the amplitudes. 

The “Lock-in e” and “KFM Servo” eliminate  
cos

e
G  by 

nullifying Udc according to the KFM technique outlined 

above and implemented as shown in Fig. 2. The next section 

uses Eq. (9) for mapping dielectric permittivity of the 

sample using the “Amplitude” output of the “Lock-in 2e”. 

 

 

 
Fig. 2.  Diagram of the Electrostatic AFM Control System with mechanical and electrical modulation 
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B. Derivation and Mapping of Relative Dielectric 

Permittivity r from the Experimental Measurements 

It is convenient to use the following notations
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Then derivatives of C are the following: 
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Using expression for C in (10), Eq. (9) can be written as 
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Statement 1 in the Appendix proves that the integral is 

non-negative. The last integral in the proof also reveals that 

contributions to the capacitance, which are linear with 

respect to z, such as Cstray mentioned in section I.C, are 

eliminated – which is an important advantage of the 

described method. Statement 2 in the Appendix derives an 

analytical expression for the integral in (13) using x and A  

in (16) and C’(z) in (11). The expression is valid for 

pZA c                                    (14) 

where p is defined in (4). Inequality (14) is a natural 

restriction on the amplitude A. Using this expression, 

equation (13) can be written as 
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(p was defined in (4)).  

Statement 3 in the Appendix proves that equation (15) has 

a unique solution [,0] 1 Ax  and the function at (15, 

RHS) is monotonically increasing. This allows us to use the 

Newton-Raphson method [12] to find x. The computations 

demonstrated excellent convergence.  

After finding x, the relative dielectric permittivity can be 

calculated from (16) assuming that h is measured: 
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The described calculations are simple enough to be 

implemented on-line for mapping surface potential and 

relative dielectric permittivity of the sample. Ref. [13] 

describes methods to evaluate the required parameters of the 

cantilever. 

IV. EXPERIMENTAL MEASUREMENTS 

A practical example of KFM and local dielectric 

measurements is taken from studies of two polymers: 

poly(styrene)  –  PS, poly(vinyl acetate) – PVAC and their 

blend. An NTEGRA-PRIMA microscope (NT-MDT) was 

used in this study. 

 The polymers exhibit different electric and dielectric 

properties. PVAC chains have a stronger dipole moment of 

2.1D compared to those of PS (0.3D). At room temperature 

dielectric permittivity r of PVAC varies from 2.5 to 8 

depending on frequency, whereas r of PS is around 2 and 

does not depend on frequency [14]. For AFM studies we 

prepared thin films of these polymers and their symmetric 

blend by spin-casting their dilute solutions in toluene on 

conducting ITO glass. The films’ thickness h was 

determined by measuring the height of a scratch made in the 

films with a sharpened wood stick. The latter is rigid enough 

to abrade the polymer without damage to the substrate. The 

scratch locations of the neat films were also examined for 

detection of the changes of the cosine amplitude signal (at 

2e) on the film and substrate. The amplitude changes were 

recorded at AC bias voltage in the 0-2.5V range at a 

frequency of 4 kHz. The AFM measurements of the sample 

topography and local dielectric properties were performed 

with conducting Pt-coated Si probes, which have stiffness 2-

3 N/m and different tip shape (cone angle 17.5 and 20 

degrees) and apex radii (15 nm and 30 nm). The scan speed 

was selected 0.6 Hz (i.e. 0.6 512-pixel lines per second). 

 
 

  The AFM topography and surface potential image of 

thin film of PS/PVAC blend are shown in Fig. 3 together 

with the map of cosine amplitude recorded at 2e=8kHz. 

The surface of this film is characterized by round-shape 

Fig. 3. Height, surface potential 

and amplitude of cos(2e = 

8kHz) images of thin film of 

PS/PVAC blend on ITO 

substrate. The electrostatic force 

interactions were stimulated by 

an AC voltage of 1V. The 
contrast in the height image 

covers surface corrugations in 

the 0-40 nm range. 
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domains imbedded into a matrix. Elevated rims are seen 

around the domains, whose internal part has different z-

levels. The morphology is consistent with the immiscible 

nature of this PS/PVAC blend. Several protruded patches 

seen between the elevated domains were formed as a result 

of the film annealing above glass transition temperature of 

PVAC. Most likely these patches resulted from a viscous 

flow of this polymer from the nearby domains. The 

observations as well as the binary contrast of the surface 

potential image indicate that the rounded domains are 

enriched in PVAC and the matrix is mostly formed of PS. 

This suggestion has been confirmed by combined AFM and 

confocal Raman studies, where PVAC-sensitive bands were 

recorded at the domains’ locations. In contrast to the surface 

potential image that differentiates the blend constituents due 

to differences in molecular dipole of the PS and PVAC 

chains, the map of amplitude cosine exhibits a rather 

complicated contrast. The latter has some resemblance with 

the sample topography that might reflect the dependence of 

cosine amplitude on the ratio of sample thickness to 

permittivity: rhp / . Therefore, the analysis of the 

cosine amplitude image is not straightforward and the 

extraction of the permittivity map from these data requires 

additional efforts. 

   

 
 

 

 

 

 

As the first step in this direction we conducted the local 

dielectric measurements at the scratch locations of PS and 

PVAC films, Fig. 4. The films’ surfaces, which are seen in 

the left part of the height images, are relatively smooth and 

featureless. The grainy morphology of ITO substrate is best 

seen in the right side of the height image of PS. In case of 

PVAC sample, the substrate surface is partially covered by 

multiple polymer particles. The amplitude cosine images 

distinctively reveal the contrast variations between the 

polymer films and ITO substrate. For both materials, the 

amplitude increases with AC bias voltage and in the detailed 

report we will show that the experimental data well match 

the quadratic dependence of amplitude on AC bias voltage, 

particularly at the voltages in the 0.75V-2.0V range. 

Therefore, we collected the results of permittivity 

calculations for the experimental amplitude cosine values 

obtained for AC bias of 1V, Table 1.  

 

 
Tip Radius 15 nm 30 nm 

Amplitude 6 nm 18 nm 48 nm 19 nm 38 nm 76 nm 

r (PS) 1.13 1.33 1.71 1.65 1.67 1.68 

r (PVAC) 1.80 1.90 2.18 2.36 2.25 2.30 

rPVAC)/PS) 1.59 1.43 1.27 1.43 1.35 1.37 

 

 The experiments were conducted at several oscillation 

amplitudes with conducting probes having nominal apex 

radii of 15nm and 30nm. The calculated permittivity values 

are consistent with macroscopic dielectric data on these 

materials. Although the absolute r values depend on the tip 

radius and applied oscillation amplitudes, the ratio of 

dielectric permittivity of PS versus PVAC shows much less 

variability. The obtained results can be considered as strong 

support for the applied theoretical model.  

 In the expansion of the theoretical analysis to the 

PS/PVAC film, we consider its columnar model structure in 

Fig. 5. The constructed cosine amplitude profile, which is 

based on the obtained permittivity data, is shown above the 

corrugated surface of the model. There is definite similarity 

of these profiles with the experimental images in Fig. 3.  

 
Fig. 5. A model of thin PS/PVAC film and the amplitude cosprofile 

above. The profile was calculated using the permittivity data extracted from 

the studies of the neat polymer films.  

V. CONCLUSION 

AFM-based local studies of electric and mechanical 

properties benefit from multi-frequency approaches. This 

statement is illustrated by measurements of the mechanical 

cosine phase changes induced by tip-sample electrostatic 

forces related to local dielectric permittivity. The extraction 

of quantitative dielectric permittivities for thin polymer films 

shows definite correlations with the macroscopic data.  

Control system design based on asymptotic nonlinear 

Fig. 4. Height and cosine amplitude images obtained at the scratch 
locations on PS (top) and PVAC (bottom) films on ITO. The evaluated 

film thickness is ~ 160 nm for PS and ~ 150 nm for PVAC. In amplitude 

images, the changes reflect the variations of AC bias voltage (from top to 
bottom) from 0 to 2V in increments of 0.25 and the last two voltages 

were reduced to 1.5V and 1.0 V. Amplitude cosθ range is 0-0.0056. 

TABLE 1. 
Calculated Dielectric Permittivity for Thin Films of PS and PVAC. 

3232



  

AFM dynamics (or rather quasi-statics in this paper) 

combined with multi-frequency modulation (mechanical and 

electrical) proved efficient and will be extended. 

Analytical derivations, especially simple expression of the 

integral in (1) for electrostatic force model, make related 

computations simple enough for electrostatic property 

mapping as well as for efficient simulations.  

APPENDIX 

Statement 1.Integral in (8) and (9) is non-negative, i.e. 
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negative. Then, due to monotonicity of 
apexC , the expression 
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proved. 

Statement 2. If inequality (14) holds, the integral in (13) can 
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where x and A are calculated by formula (16). 

Proof. Using the expression for C’(z) defined in (10)-(11), 

   




0

2

~
coscos

cos
~

RpZyApZyA

ydyR
I

cc

. 

The function under the integral is rational with respect to 

cosy, and using standard change of variables  2/tan yt  , 

 2~
2RI  

 
         







0

22

2

~~
1

ARpZARpZtApZApZt

dtt

cccc  
 

When inequality (14) holds, the integral can be calculated by 

standard calculus methods, 
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and expressed in terms of variables in (16) to conclude the 

proof. 

Statement 3.Equation (15) for any positive LHS has a 

unique solution [,0] 1 Ax . 

Proof. Derivative of (15, RHS) 
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is positive because for a positive x, the second expression in 

the latest brackets is smaller than the first one. This 

monotonicity guarantees the uniqueness of the solution of 

equation (15). The existence of the solution follows from the 

fact that function (15, RHS) is equal to zero at x=0 and goes 

to infinity as
1 Ax . 
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