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a b s t r a c t

In the current study, we have compared the effects of heat and radiofrequency plasma glow discharge
(RFGD) treatment of a Ti6Al4V alloy on the physico-chemical properties of the alloy’s surface oxide.
Titanium alloy (Ti6Al4V) disks were passivated alone, heated to 600 ◦C, or RFGD plasma treated in pure
oxygen. RFGD treatment did not alter the roughness, topography, elemental composition or thickness
of the alloy’s surface oxide layer. In contrast, heat treatment altered oxide topography by creating a
pattern of oxide elevations approximately 50–100 nm in diameter. These nanostructures exhibited a
three-fold increase in roughness compared to untreated surfaces when RMS roughness was calculated
after applying a spatial high-pass filter with a 200 nm-cutoff wavelength. Heat treatment also produced a
surface enrichment in aluminum and vanadium oxides. Both RFGD and heat treatment produced similar
increases in oxide wettability. Atomic force microscopy (AFM) measurements of metal surface oxide net
charge signified by a long-range force of attraction to or repulsion from a (negatively charged) silicon
nitride AFM probe were also obtained for all three experimental groups. Force measurements showed that
the RFGD-treated Ti6Al4V samples demonstrated a higher net positive surface charge at pH values below
6 and a higher net negative surface charge at physiological pH (pH values between 7 and 8) compared
to control and heat-treated samples. These findings suggest that RFGD treatment of metallic implant
materials can be used to study the role of negatively charged surface oxide functional groups in protein
bioactivity, osteogenic cell behavior and osseointegration independently of oxide topography.

Published by Elsevier B.V.

1. Introduction

The optimal osseointegration of metallic prosthetic implants
employed in the fields of orthopedics and dentistry ultimately
depends on the material being used and the surface characteris-
tics of the material. There are a few biomaterials in wide use today
that exhibit osseointegratibility. Titanium and titanium alloys are
widely employed in orthopedics and dental implants due to their
biocompatibility [1,2]. In the dental field, commercially pure tita-
nium (cpTi) and a titanium alloy (Ti6Al4V) have been successfully
utilized [3]. Titanium is characterized by different degrees of purity
and mechanical properties. The biocompatibility of titanium is due
to a thin, retentive oxide film covering and protecting the underly-
ing metal from corrosion. The protective effects of the oxide layer
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against corrosion can prevent the release of toxic metal particles
which can evoke an osteolytic reaction that leads to implant loos-
ening and failure. Nevertheless, a significant percentage of implants
do fail anyway, with aseptic loosening as a leading cause of 90% of
total hip arthroplasty failures in the U.S. and other countries [4,5].
Despite the reported long-term predictability of dental implants
[6,7], failures also occur in 10% of cases within a 5-year period
[8]. The process of aseptic loosening is related to both osteolysis
and mechanical loosening and develops at the interface between
the implant and bone. In this process, loosening occurs when
the mechanical burden placed on the implant causes interfacial
stresses that exceed the interfacial strength between the implant
and the surrounding bone. The quality and quantity of bone is gen-
erally believed to be one of the major determinants for implant
success [9]. Conversely, inadequate osseointegration that is likely
associated with poor quality and quantity of bone at the implant
interface enhances the vulnerability of the implant to loosening and
failure.

Several recent approaches have emphasized the modification
of the metallic implant surface’s physical and chemical properties
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in order to enhance protein binding/bioactivity, the attraction of
appropriate cell types and implant integration ([10–14]; see com-
panion paper, [15]). However, relatively few studies have focused
on the importance of the metallic implant’s surface oxide in bone
cell attachment/function and implant integration. Both titanium
and Ti6Al4V form a surface oxide layer capable of interacting with
biological fluids and cells when implanted in situ [16–18]. We have
demonstrated that the heat treatment of a titanium alloy (Ti6Al4V)
increased the hydrophilicity of the surface oxide of Ti6Al4V and
the attachment of osteogenic cells to adsorbed fibronectin [13].
These findings suggest that the concentration of reactive func-
tional groups or the net charge of the surface oxide was altered by
heat treatment, thereby resulting in an enhancement of adsorbed
fibronectin’s bioactivity. However, since heat treatment also mod-
ified other properties of the oxide [13], this method cannot be
utilized to identify the critical oxide physico-chemical property
that modulates protein adsorption, bioactivity, bone cell attach-
ment/function and implant integration.

Radiofrequency plasma glow discharge (RFGD) treatment has
been used to clean, sterilize and chemically alter the surfaces of
materials to improve or change cell adhesion properties by using
an RF excitation source to create a low-temperature gas plasma
[19–21]. Plasma generated from ordinary atmosphere or oxygen
gas can be used to implant oxygen anions onto materials, thereby
increasing surface oxide concentration [22,23], wettability [23,24]
and the number of hydroxyl groups [22,25,26]. Since hydroxyls
complexed with titanium or aluminum have an isoelectric point at
a pH of 4.7–6.2 and 3.5 [27], respectively, these functional groups
are likely to be negatively charged when exposed to a physio-
logical aqueous environment at pH 7.4. Therefore, our objective
was to show whether RFGD could be used to increase the metal
oxide surface’s net charge, especially at physiological pH, without
introducing other complicating factors such as changes in oxide
elemental composition and a transformation in the oxide’s sur-
face topography. The investigation of the potential relationship
between treatment-induced increases in the oxide’s surface net
charge and an enhancement in adsorbed fibronectin’s cell binding
activity is presented in our companion article [15].

2. Materials and methods

2.1. Materials

RBS 35® detergent was obtained from Fisher Scientific Inc.
(Rockford, IL). All other chemicals were from Sigma–Aldrich (St.
Louis, MO) and were of spectroscopic grade.

Cylindrical implant disks were engineered to a 2-degree taper
to enable the disks to form a tight seal when inserted into the
well of a 96-well cell culture plate. These disks were initially pre-
pared from Ti6Al4V sheets obtained from TIMET (Wentzville, MO)
that were cut into strips and later punched into disks (Indus-
trial Tool & Die Co., Troy, NY). The strips were initially prepared
with 240 and 320 grit aluminum oxide abrasive belts, followed
by polishing with finer grit polishing compounds on a series of
buff wheels to a high luster, and cleaned using a trichloroethy-
lene vapor degreaser (Williams Metal Finishing, Inc., Sinking
Spring, PA). The Ti6Al4V disks (8 mm diameter/1.0 mm thick) were
then fabricated by running the polished strips through a spe-
cially designed punch press and deburred manually on a custom
vacuum apparatus. This apparatus avoids scratching the highly
polished surface through a process in which the metal strips
are punched into disks by cutting through the unpolished side
and the disks are extracted using Teflon coated die plungers,
transported through Teflon tubes, and collected in a padded
tray.

2.2. Disk preparation

2.2.1. Controls
Disks were washed successively in isopropanol, acetone, xylene,

acetone, and 1 M ammonium hydroxide, 40% nitric acid, and rinsed
with deionized water according to the ASTM-F86 protocol [28]. The
passivated disks were then dried, sterilized, and stored as previous
described [13].

2.2.2. Heat and RFGD treatment
The alloy disks were heated to a temperature of 600 ◦C in air

as previously described [13]. RFGD plasma treatment of disks was
performed using a modified Harrick RF unit (Ossining, N.Y.; PDC-
002) with a quartz chamber to subject samples to an oxygen plasma
treatment. Ti6Al4V disks were passivated as previously described
[13] to form a stable surface oxide layer [29] and placed on a
clean quartz tray. The tray was inserted into the RF unit and the
unit was placed under dry vacuum (EcoDry-M oil-less vacuum
pump; Leybold Vakuum, Köln, Germany). When the vacuum was
low enough (1600 mTorr) to remove all water vapor, oxygen was
gradually bled into the system via a needle valve. The gas flow
rate was monitored using an Omega shielded flow meter (Omega
Technologies Co., Stamford, CT) at a rate of 250 ml/min. All oxygen
gas was prefiltered prior to its entry into the chamber (Advantec
MFS, Inc., Pleasanton, CA). Samples of titanium alloy were treated
with a 13.56 MHz RF power-generated oxygen plasma for 5 min at
29.6 W. Following heat or RFGD treatment, disks were sterilized and
stored as previously described for untreated (control) specimens
[13].

2.3. Surface analysis

2.3.1. Atomic force microscopy imaging for roughness analysis
Atomic force microscopy (AFM) was used to image untreated

control and treated alloy disk surfaces to determine their sur-
face topography. A NTEGRA Prima Scanning Probe Laboratory
(NT-MDT, Zelenograd, Russia) was employed in tapping mode
under ambient conditions. The probes were rectangular NSG-01
silicon levers with an aluminum back coating (NT-MDT, nom-
inal values for spring constant k = 5.1 N/m, radius of curvature
r = 10 nm, and resonance frequency f0 = 150 kHz). Several random
1 �m × 1 �m, 10 �m × 10 �m and 30 �m × 30 �m areas on two
disks were scanned for each of the control and modified disks.

2.3.2. Electron spectroscopy for chemical analysis
Electron spectroscopy for chemical analysis (ESCA) was used for

determination of surface composition and elemental oxidation of
both the treated and untreated titanium alloy samples as previously
described [13,30]. ESCA analyses were conducted using a Physi-
cal Electronics (PHI) model 5600 ESCA spectrometer (Chanhassen,
MN), employing a monochromatic X-ray source, Al K� = 1486.7 eV,
operated in the focused spot mode. To determine the elements
present on the alloy surfaces, ESCA survey spectra were obtained at
an analyzer pass energy of 187.85 eV. For quantification purposes,
high-resolution spectra of the elements detected were obtained at
a pass energy of 11.75 eV. An 0.8 mm diameter spot size was used
for analysis. The atomic percentages of the elements present on the
disk surfaces were calculated using software and atomic sensitiv-
ity factors included with the instrument data system. The binding
energies of ESCA peaks were referenced to C 1s at 284.8 eV.

2.3.3. Wettability properties
The wettability of the control and modified disks was deter-

mined using a sessile water drop method measuring contact angle
(◦) as previously described [13].
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2.3.4. Atomic force measurements of metal oxide net surface
charge in water

All force curves were acquired in picopure water (Millipore
Synergy, Millipore Corporation, Billerica, MA.) with a resistivity
of 18.2 M� cm that had equilibrated at pH 5.6 for 20 min (Oak-
ton pH/CON benchtop pH meter, Oakton Instruments, Vernon Hills,
IL.). No salts, acids or bases were added to the water. Force spec-
troscopy was performed using the NTEGRA Prima Scanning Probe
Laboratory. The SMENA scan head (tip-scanning configuration,
100 �m × 100 �m × 10 �m scan range with closed-loop capabil-
ity for highest positioning accuracy) was applied in conjunction
with a closed 4 ml liquid cell containing an inlet and drainage port.
We used SiNi probes (BudgetSensors, Sofia, Bulgaria) featuring gold
coated, triangular silicon nitride cantilevers; nominal numbers for
spring constant, resonance frequency, and tip radius of curvature
are k = 0.06 N/m, f = 10 kHz, and r < 15 nm, respectively.

Prior to use, the liquid cell and all components were first cleaned
by sonication in Contrad 70 lab detergent (Decon Labs, King of Prus-
sia, Pennsylvania) and thoroughly rinsed in picopure water. The
components were further cleaned by a subsequent sonication cycle
in methanol, followed by another thorough rinse cycle in picopure
water.

Force curves had a total approach/retract range of 400 nm and
were acquired at a velocity of 200 nm/s. The raw force data (“force-
vs-displacement curves”) was subsequently converted into curves
showing the force as a function of true tip–sample distance [31].
To exclude possible effects due to the tip shape and tip contami-
nation, a complete series of measurements on the control and on
each of the treated alloy surfaces were conducted using one and the
same AFM probe. Therefore, all observed differences in the mea-
sured curves are due to actual differences in the sample. On each
sample, 30–40 force curves were acquired at 15 different sample
locations to exclude effects of sample inhomogeneity and sample
contamination. To assure reproducibility of the results, this series of
experiments was repeated using a second probe and second batch
of alloy samples.

2.3.5. Atomic force measurements of metal oxide net surface
charge in buffer

Atomic force spectroscopy was carried out on Ti6Al4V control
and treated disks using the same experimental setup as described
in Section 2.3.4, except that NT-MDT CSG01A aluminum-coated sil-
icon probes with rectangular cantilevers (spring constant 0.03 N/m
and tip radius of 10 nm) were used. Sodium nitrate buffers were
titrated using prepared sodium nitrate and sodium hydroxide or
nitric acid stock solutions to a pH of 3, 4, 5, 6, 6.4, 7, 7.4 and
8. For these buffers, an ionic strength of 2 mM was chosen in
order to make the Debye length about 7 nm, long enough that the
corresponding electrostatic forces can be discriminated from the
shorter-ranged van der Waals forces in the force curves. Since the
isoelectric point (IEP) of silicon is significantly below 3, the AFM
probe is negative throughout the pH range of 3–8 investigated here.
This enables us to accurately determine the IEP of the titanium
surfaces in this pH range.

The AFM silicon probe tip was allowed to reach equilibrium
(30 min to 1 h) in buffer and force curves were measured. After each
experiment at a given pH value, a small amount of the buffer solu-
tion was extracted from the liquid cell to measure its pH value. The
deviation between the pH values measured before and after the
experiment was typically <0.1 pH units, within the accuracy of the
pH meter. The pH can thus be considered constant for the duration
of the experiment. In order to carry out an experiment at a new
pH value, 60 ml of buffer at the new pH was flushed through the
cell.

The force curves with a total scan range of 200 nm were acquired
at an approach/retract rate of 50 nm/s. The starting positions for the

force measurements were chosen from 170 nm above the sample
such that the cantilever was deflected by about 30 nm after estab-
lishing contact. A total of three control and treatment disks were
analyzed. Five random sample locations per disk were investigated
at each pH value and 10 force curves were performed at each site.
For a given sample, measurements at all pH values were carried
out with one and the same tip in order to exclude systematic force
differences due to tip shape.

The force data was analyzed as follows. Line fits to the constant-
compliance regime of the approach curves and the zero-force
regime (at large tip separations) were carried out. This enabled us
to convert the raw curves (force-vs-displacement) into force-vs-
distance curves [31]. Force curves with random events or unclean
baseline were disregarded. In order to determine the electrostatic
forces due to sample surface charges, forces at tip separations
<10 nm were not considered, as van der Waals forces are usually sig-
nificant at such small distances. For the remaining data points with
z > 10 nm electrostatic interactions are the only significant forces.
To reduce noise and to obtain representative data, all force curves
taken at a particular location of a sample were averaged. Corre-
spondingly, exponential decay curves f(z) = b·exp[−a·z] were fitted
to model the electrostatic double layer forces. The fit parameters
a and b represent the Debye length and the hypothetical electro-
static force at zero distance, respectively. We use b as a measure for
the strength of the electrostatic interaction between the tip and the
surface; it represents the product of the surface charge densities at
the tip and at the surface for a given tip geometry.

2.4. Statistical analysis

All of the experimental data were summarized and analyzed
using a one-way analysis of variance (ANOVA) for all surfaces. The
alpha level was set at 0.05.

3. Results

3.1. Surface analysis

The surface topographies of modified and unmodified disks
were analyzed using AFM (Fig. 1). The control disks showed sig-
nificant topography, with peak-to-peak ranges of typically 200 nm
in a 10 �m × 10 �m scan area (see Fig. 1a). Virtually all this topogra-
phy is due to machining and polishing: parallel, linear grooves with
micron and submicron feature sizes (Fig. 1a). AFM revealed that
disks exposed to RFGD oxygen plasma exhibited a surface topog-
raphy (Fig. 1b) that was identical to that of control disks (Fig. 1a
and b). In contrast, heat-treated surfaces imaged by AFM exhib-
ited finer scale surface structure (Fig. 1c), compared to the polished
samples (Fig. 1a), that consisted of numerous oxide projections in
each square �m of the disk surface. The number of oxide eleva-
tions per square �m of the heated surface, their dimensions and
the remarkable difference in topography between the preheated
and either the control or RFGD-treated disks became even more evi-
dent at a 1 �m × 1 �m scan area (Fig. 1d–f). Heat treatment created
oxide elevations roughly 50–100 nm in diameter (Fig. 1f). Neither
the unmodified (Fig. 1d) nor the RFGD-treated (Fig. 1e) surfaces
exhibited this (or any other) form of oxide nanostructure.

While the specific topographic differences introduced by heat-
ing are obvious to the observer, we also wanted to introduce an
objective metric to quantify them. A simple roughness evaluation is
not suited for this purpose. The small 50–100 nm elevations created
by heating have relatively low heights compared to the pre-existing
surface topography of our samples of the alloy due to machining
and polishing. Consequently, a simple RMS roughness analysis is
not sensitive to small changes in roughness. In order to overcome
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Fig. 1. Atomic force microscopy (AFM) images of control (a and d), RFGD-treated (b and e), and heat-treated (c and f) Ti–6Al–4V for 10 �m × 10 �m scan area (a–c) or a
1 �m × 1 �m scan area (d–f). After applying a spatial high-pass filtering with a 200 nm-cutoff to (b) and (c), respectively, only the small-scale features of the RFGD-treated
(g) and heat-treated (h) samples remain.

this difficulty, we first applied a spatial high-pass filter to the mea-
sured topography data before we carried out the RMS roughness
analysis.

Fast Fourier Transforms (FFT) of the topography f(x,y) were com-
puted to obtain the matrix F(�x,�y), representing the complex
amplitudes of the plane-wave components exp[−2�i·(�xx + �yy)]
with spatial frequencies �x and �y. We multiplied F by the transfer
function t(�x, �y) = 1 − exp[−�2

0(�2
x + �2

y )], with �0 = 200 nm. This
introduces a soft cutoff such that structures below 100 nm remain
virtually unaltered, structures between 200 nm–400 nm wave-
length get attenuated by a factor of (e1 − 1)/e, whereas feature sizes
of 400 nm and above are practically eliminated. This can be seen
in Fig. 1g, which shows the high-pass filtered version of Fig. 1b,
representing the RFGD-treated alloy surface. Larger structures are
removed (the wider valleys), whereas all the small-scale grooves
due to polishing were completely preserved. Similarly, Fig. 1h
shows the high-pass filtered version of the heat-treated sample
topography (Fig. 1c). This spatial high-pass filter approach allows
for the analysis of small heat-induced oxide elevations at small
length scales without the interference of larger metallic polishing
grooves.

The RMS roughness values of these high-pass filtered images
are shown in Table 1. After high-pass filtering, the control samples
featured a relatively low roughness of only 4.1 ± 1.1 nm. In con-
trast, we found that the heat-treated samples exhibited an RMS
roughness of 12.8 ± 1.7 nm due to the 50–100 nm grains intro-

duced through the heating process. For the RFGD-treated samples,
we observed a roughness of 3.6 ± 0.9 nm which demonstrates that
the RFGD treatment does not introduce any statistically significant
roughening of the alloy substrates. It should also be noted that the
method introduced here is completely independent of the inves-
tigated image size: all results for 1 �m × 1 �m, 10 �m × 10 �m,
or 30 �m × 30 �m scan sizes and pixel dimensions 256 × 256,
512 × 512, or 1024 × 1024 were statistically equivalent. This fur-
ther underlines the robustness of this method to detect roughness
at small length scales independent of the imaging parameters.

3.2. Oxide thickness and chemical analysis

We have previously reported that a low intensity metallic Ti
peak was observed in the ESCA spectrum of control disks, indicat-

Table 1
Calculated RMS roughness values of the AFM topography images of control and
processed allow substrates after spatial high-pass filtering (cutoff 200 nm).

RMS roughness of sub-200 nm features

Control 4.1 ± 1.1 nm
Heat-treated 12.8 ± 1.7 nm
RFGD-treated 3.6 ± 0.9 nm

Values are mean of at least 3 samples for each treatment (mean ± standard devia-
tion).
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Table 2
Surface composition as determined by ESCA.

Sample Atomic percent Atomic ratio

C O Ti Al V Al/Ti V/Ti V/Al

Polished 21.96 50.00 23.95 3.59 0.50 0.15 0.021 0.14
RFGD 21.04 51.72 23.26 3.41 0.58 0.15 0.025 0.17
600 ◦C 24.13 49.48 13.10 8.52 4.78 0.65 0.37 0.57

Data are reproducible to +12% RSD or better.
N was also detected on all samples at below 0.6 at.%.

ing that a thickness of the oxide film is on the order of 5 nm [13].
In the present study, the heat-treated alloy disk did not exhibit
a metallic Ti or Al peak, indicating that the treatment had thick-
ened the surface oxide layer. In fact, the heat treatment produces
oxide layers that are too thick to be accurately quantified (using
depth profiling) by ESCA, as we have previously reported [13]. In
contrast, the control and RFGD-treated samples did manifest metal-
lic Ti and Al peaks, reflecting the presence of both metals beneath
the surface oxide layer. Metallic Ti and Al were less than approx-
imately 5% of the total peak energies of all of the metal oxides
in the specimens analyzed. Therefore, RFGD does not significantly
increase oxide layer thickness as does heat treatment. The surface
composition of the disks determined by ESCA is shown in Table 2.
For all the disks, C, O, N, Ti, Al and V were detected. The organic
carbon detected by ESCA was present at the same levels on unmod-
ified and modified disks. The surfaces are composed primarily of
Ti, with lesser amounts of Al and V. The atomic ratios of the met-
als for the control and RFGD disks were the same, demonstrating
that RFGD treatment did not alter the elemental composition of
the alloy’s surface oxide layer. In contrast, the heated disks exhib-
ited a marked decrease in Ti, with significant increases in Al and
V compared to the control and RFGD disks. This indicates that
the heat treatment has enriched the surface of the alloy disks
in both Al and V relative to Ti, as we have previously reported
[13].

ESCA binding energy data provides information about the chem-
ical states of the metals on the alloy disk surfaces. For control,
RFGD and heat-treated samples, the primary Ti 2p3/2 peak occurred
at 458.8 eV. This indicates the presence of Ti in the +4 oxidation
state, consistent with the presence of TiO2 on the surface [32,33].
The primary Al 2p peak for control, RFGD and heat-treated disks
occurred at 74.4 eV, consistent with the presence of Al+3 as Al2O3
on the surface [34–36]. For the control and RFGD samples a broad
V 2p3/2 peak at about 516 eV was observed. This suggests that V
is present in a mixture of lower oxidation states, possibly V2O3
and VO2 [37,38]. Therefore, like the atomic composition data, the
ESCA energy binding data also demonstrates a similarity in com-
position between the control and RFGD-treated surfaces. For the
heated alloy disks, two V 2p3/2 peaks were evident in the spec-
tra at binding energies of 517.5 and 516.4 eV. These peaks reflect
the presence of V+5 and V+4 on the disk surface, and suggest the
presence of V2O5 and VO2 [62], as we have previously reported
[13]. The V2O5 and VO2 were present in approximately an 80:20
ratio.

3.3. Wettability properties

RFGD treatment of the titanium alloy resulted in a surface wet-
tability similar to that of our heated samples (Table 3). Either
heating or exposing Ti6Al4V disks to RFGD resulted in a substantial
and statistically significant increase in surface wettability (contact
angles were reduced to 16.0 ± 2.0◦ and 17.3 ± 6.0◦, respectively)
when compared to control samples exhibiting a contact angle of
43.0 ± 5.3◦.(Table 3).

Table 3
Wettability measurements for titanium–aluminum–vanadium samples following
modification by thermal or RFGD treatmenta.

Ti6Al4V treatment Contact angle (◦)

Control 43.0 ± 5.3
Heated (600 ◦C) 16.0 ± 2.0*

RFGD 17.3 ± 6.0*

a Values are means of at least 10 samples for each treatment (mean ± standard
deviation).

* Significantly different from control based on ANOVA (p < 0.001).

3.4. Metal surface oxide net charge

The net surface charge of unmodified and modified Ti6Al4V was
measured using atomic force spectroscopy. When exposed to water
or a buffer, the surface of the AFM tip acquires a charge. When the
tip approaches the sample surface, the tip charge interacts with
sample charges. The forces associated with tip deflection away from
(repulsive force) or attraction towards (attractive force) a sample
surface can be used to estimate the net surface charge. The isoelec-
tric point for silicon nitride, the material used in the AFM probe,
varies depending on experimental conditions [39,40]. The AFM tip
charge was thus determined by measuring its interaction with a
freshly cleaved mica surface in picopure water without electrolytes
at pH 5.6. The result is shown as a green curve in Fig. 2, in which
the observed forces are plotted as a function of the true tip–sample
separation. By convention, repulsive forces are represented by pos-
itive numbers. For tip–surface separations in the range 15–50 nm,
a region where only electrostatic forces are relevant, we observed
significant repulsion. Since mica has an isoelectric point of ∼3.0,
the charge of the mica surface is strongly negative at pH 5.6 [41].
The observed repulsion shows that our silicon nitride AFM tip also
has a net negative charge at pH 5.6.

Subsequently, we acquired force curves on control, heat-treated
and RFGD-treated Ti alloy surfaces (black, red, and blue curves in
Fig. 2, respectively) in the absence of electrolytes. The forces for con-
trol and heat-treated samples (black and red curves, respectively)
are indistinguishable within the noise level of our measurements.
Both curves show attractive forces in the short range from 0 to

Fig. 2. Forces between a negatively charged silicon nitride AFM probe and control,
heat-treated and RFGD-treated Ti6Al4V samples or a mica surface in water. Atomic
forces of attraction or repulsion were measured for control and treated surfaces in
picopure water at pH 5.6. The Z distance decreases as the sample surface is brought
closer to the silicon nitride tip. Long-range electrostatic forces are measured at Z
distances greater than 10 nm whereas interactions between 0 and 10 nm are dom-
inated by van der Waals forces. A force of repulsion upon approach is signified by
an increase in the size of the deflection of the tip compared to baseline deflection.
A force of attraction is signified by a decrease in the size of the deflection of the
tip compared to baseline deflection. Three disks were analyzed for each experimen-
tal group. The data obtained for each individual metal disk represent an average of
30–40 force curves acquired at 15 different sample locations for each disk. The three
averaged force curves obtained for the disks in each experimental group were then
averaged to obtain the final force curves presented in the figure.
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Fig. 3. Forces between a negatively charged silicon nitride AFM probe and control,
heat-treated and RFGD-treated Ti6Al4V samples in a nitrate buffer. Atomic forces
of attraction or repulsion were measured for control and treated surfaces in 2 mM
sodium nitrate buffer at a range of pH’s between 3 and 8.4. Exponential decay curves
f(z) = b·exp[−az] were fitted to model the electrostatic double layer forces. The fit
parameters a and b represent the Debye length and the electrostatic force at zero
distance, respectively. The mean electrostatic zero-distance force at each pH is pre-
sented as a measure of the strength of the electrostatic interaction between the tip
and the surface. A total of three control and treatment disks were analyzed. The
data obtained for each individual metal disk analyzed represents an average of five
random sample locations per disk at each pH value and 10 force curves performed
at each site. The three averaged values obtained for the disks in each experimental
group at each pH shown were then averaged to obtain the final data points presented
in the figure.

10 nm, and no measurable forces for distances >10 nm. The force
curve of the RFGD-treated sample (blue) exhibits a very similar
shape, although the attractive forces exhibit a significantly longer
range, with measurable forces present at distances larger than
10 nm. This observed increase in the range of the attractive forces
in the RFGD sample can only be explained by an attractive elec-
trostatic component. Therefore, there is a significant positive net
surface charge present on the RFGD-treated samples at pH 5.6,
whereas the control and heat-treated samples only exhibit signif-
icant forces in the range of 0–10 nm. Within this range, the forces
measured are dominated by van der Waals forces.

Force curves were also acquired for control and treated sam-
ples in the presence of sodium nitrate buffer at a range of pH
values from 3 to 8.4 (Fig. 3). The data presented in Fig. 3 shows
parameter b obtained from fits to the force curves for the three
surfaces at various pH values as described in Section 2.3.5. This
parameter represents the hypothetical zero-distance electrostatic
force between the tip and sample and is used as a measure of the
strength of the electrostatic tip–sample interactions. The control,
preheated and RFGD-treated samples each displayed an electro-
static force of attraction at a pH of 5 or below (Fig. 3). However,
force measurements revealed a greater electrostatic force of attrac-
tion for RFGD-treated samples compared to control samples over
this range of acidic pH values. In contrast, heat-treated samples dis-
played a force of attraction that was equivalent to that of control
samples between pH 3 and 5 (Fig. 3). These results indicate that
only RFGD treatment increased the positive net surface charge of
the Ti6Al4V alloy measured at acidic pH values. Interestingly, the
force measurements using nitrate buffer showed that control sam-
ples possessed a positive net surface charge between pH 5 and 6.4
(Fig. 3), despite the fact that these samples tested in water were
found to have a nominally neutral net surface charge within this
pH range (Fig. 2).

In contrast to their force measurement patterns observed at
pH 5 or lower, both the RFGD-treated and heat-treated samples
exhibited an electrostatic force of repulsion between pH 6 and 8.4

(Fig. 3). However, control specimens still manifested an electro-
static force of attraction even at pH 6.4 and only demonstrated
an electrostatic force of repulsion at a pH of 7 or higher (Fig. 3).
These results indicated that all three groups of samples displayed
a negative net surface charge at physiological pH (between pH 7
and 8), with RFGD-treated > heat-treated > control samples in the
magnitude of this net charge. Both treatments shifted the surface
isoelectric point of the titanium alloy from approximately pH 6.7
to 5.4 (Fig. 3).

4. Discussion

The basic objective of this study was to compare the effects of
heat and RFGD treatments of a titanium alloy on the physical and
chemical properties of the alloy’s surface oxide. Our underlying
goal was to determine whether RFGD treatment could be used to
modify only the surface chemistry of the alloy’s oxide without alter-
ing oxide atomic composition or structure. We have shown that
the effects of RFGD and heat treatment on surface oxide proper-
ties were qualitatively very different. RFGD treatment did not alter
surface topography with respect to control. In contrast, the pre-
heating treatment introduced 50–100 nm-sized oxide elevations
which were superimposed on metallic polishing groves that are
significantly larger in both lateral size and amplitude (see Fig. 1c).
Interestingly, none of the polishing grooves remain visible after
high-pass filtering (Fig. 1h). In contrast, the high-pass filtered image
of the RFGD-treated surface still shows some small-scale grooves.
Therefore, we conclude that these groove-like surface features have
been converted into the small 50–100 nm-sized oxide grains during
the heat treatment. To more accurately quantify the roughness of
these nanostructures, we used an advanced method of roughness
evaluation that is based on computing the RMS roughness after
applying a 200 nm-cutoff high-pass filter to remove the contribu-
tion of polishing grooves (>200 nm). Using this advanced method
of roughness measurement, it was demonstrated that the heat-
treated surface was much rougher at small length scales compared
to control or RFGD-treated specimens. The heat-treated samples
featured a roughness of sub-200 nm features which is about 3 times
as high as the corresponding roughness of either control or RFGD
samples, which are identical within the precision of measurement.
These findings clearly show that only the heat treatment increased
the roughness of the Ti6Al4V alloy’s surface oxide.

Preheating also substantially altered the elemental composition
of the oxide compared to polished controls whereas RFGD failed to
do so. Interestingly, both heat and RFGD treatment produced a more
hydrophilic surface oxide compared to control samples, although
the untreated sample oxide was already relatively hydrophilic
(water droplet contact angle < 60◦). However, the key finding of our
study is that both heat and RFGD treatment of the Ti6Al4V produced
a more negatively charged surface oxide of the alloy at physiological
pH compared to the control oxide. Our findings collectively demon-
strate that, of the two surface treatments tested, only RFGD can be
utilized to selectively alter surface oxide charge without changing
its topography or atomic composition. Therefore, the RFGD treat-
ment of metallic implant materials was used in our companion
article to study the role of the oxide’s net charge, independently
of other oxide properties, in protein bioactivity and osteogenic cell
behavior [15].

4.1. RFGD and other plasma treatments

Our finding that a 13.56 MHz RF power-generated oxygen
plasma creates a more charged oxide in the Ti6Al4V alloy has not
been previously reported. In RFGD, an RF generator provides a high
voltage alternating current in the radiowave frequency of the elec-
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tromagnetic spectrum to create a low-temperature plasma in a
process gas region. RFGD produces a plasma composed of ener-
getically active species including electrons, free radicals, charged
monoatomic species and photons [42]. Other studies have instead
employed a direct current-generated glow discharge plasma (GDP)
that is produced by a continuous potential difference applied
between a cathode and anode located some distance apart in a
gaseous medium. A number of studies have employed a GDP using
argon gas and measured its effects on titanium surface hydrophilic-
ity [24], the elimination of surface contaminants [43] and bone
cell attachment [44]. Hence, there are a number of considerations
suggesting that RF oxygen plasma and DC argon plasma will have
different effects on the physical, chemical and biological properties
of the oxide.

Differences between the DC current and RF plasma treatment of
titanium materials in their effects on surface oxide properties, pro-
tein adsorption/bioactivity and bone cell behavior (see Ref. [15])
may occur as they produce plasmas with different properties. In our
study, an AC current-generated oxygen plasma created by RFGD
is likely to implant different particles compared to a GDP+ argon
plasma, which exclusively induces the accumulation of electrons
at one electrode, the powered anode [20]. In contrast, RFGD plas-
mas are likely to implant positive ions, neutral species as well
as electrons, since the AC current periodically reverses voltage
polarity at each electrode. Another consideration is that DC-glow
discharge forms different regions (e.g. dark space, negative glow,
positive column) within the space between the cathode and anode
where the electrical properties (voltage, charge density, luminos-
ity) vary along the length of the glow discharge [45,46]. Spatial
variability of surface treatment can occur depending on the plasma
configuration and object geometry being treated. We employed an
inductively coupled RFGD plasma system composed of a helical coil
configuration wrapped around a cylindrical vacuum chamber. This
arrangement produces a multidirectional isotropic plasma expo-
sure and thus the 3-dimensional surface geometry of the treated
object is not a significant factor [43]. As a result, RFGD creates a
more spatially uniform surface exposure to the energetic particles
it generates compared to DC current plasmas. Therefore, although
our results suggest that RFGD pretreatment can alter the net charge
of the surface oxide, RFGD’s effects on the oxide may not be repro-
duced using DC-generated plasma by virtue of the differences in
physics between DC-glow discharge and RFGD.

Differences between our RFGD procedure and other methods
using GDP [44,47] in their effects on oxide surface properties
may also be attributable to the use of different gases employed
to create the plasma (oxygen vs. argon, respectively). A number
of considerations suggest that argon and oxygen plasmas may
have very different surface physico-chemical effects on metal-
lic implant materials that can affect their biological properties.
For example, Doundoulakis [48] observed that argon sputtering
etched or removed portions of the titanium surface oxide, thereby
altering its topography. In contrast, a plasma created from oxy-
gen, which has a much lower atomic weight than argon, has
been shown to have a smoothing effect on metal oxides believed
to be due to the apposition of a thin oxide layer [49]. This lat-
ter finding confirms our observations that RFGD did not increase
Ti6Al4V surface roughness or alter topography. Furthermore, the
intensities of the metallic Ti and Al peaks were less in our RFGD
samples compared to the controls, suggesting that oxygen plasma
treatment did increase the oxide layer, an effect that cannot be
reproduced with argon plasmas. Pure titanium films exposed to
oxygen plasma also demonstrate a reduction in metallic titanium
and have an increase in TiO2 [50]. A similar effect may occur on
titanium alloys. Therefore, the gas used to create RF or DC plasmas
is an important variable in their effects on the properties of the
oxide.

4.2. Mechanisms for surface charge alteration

Our study is the first to directly measure the effects of RFGD
treatment on the net charge of a titanium alloy’s surface oxide layer
by AFM. Employing AFM, we determined that both the RFGD and
heat pretreatments made the surface oxide of Ti6Al4V more nega-
tively charged when measured at a pH of 6 or higher. However, the
RFGD-treated alloy samples had a higher positive net surface charge
at acidic pH (pH 3–5) and a higher negative net surface charge
at alkaline pH (pH 7–8.4) compared to either the heat-treated or
control or samples. It is clear that either treatment induced a sus-
tainable alteration of the alloy surface charge at the atomic level. As
discussed in our earlier study, local metal oxide charge can be influ-
enced by the acid–base balance of metal hydroxo-complexes [25].
The hydroxo-complexes of multivalent metal cations are ampho-
teric, exhibiting both acidic and basic properties:

M−OH + H2O ⇒ [M−O]− + H3O+ (acidic reaction)

M−OH + H2O ⇒ [M−OH2]+ + OH− (basic reaction)

Each metal is likely to have a unique isoelectric point, the pH
at which there is an equal proportion of [M−O]− and [M−OH2]+

groups and there are no uncompensated charges. The increase in
the negative net surface charge (measured at alkaline pH) pro-
moted by heat treatment of Ti6Al4V might be related to the alloy’s
specific metallic composition, for two reasons. Firstly, the heat-
ing of alumina surfaces has been shown to enhance the acidity of
the surface Al–OH groups to promote their deprotonation, espe-
cially at high calcination temperatures [51]. Secondly, the heat
treatment-induced increase in the Al/Ti ratio in the surface oxide
layer may increase the overall concentration of M−O− anions
since Al–OH has an isoelectric point at a much lower pH than
Ti–OH [52]. In fact, we found that heat treatment shifted the sur-
face isoelectric point of the titanium alloy from approximately pH
6.7 to 5.4. It should be noted that the effects of heat treatment
on net surface charge were both qualitatively and quantitatively
different from those of RFGD, since only the latter treatment
altered net surface charge at acidic pH. These findings suggest
that the two treatments alter surface oxide charge via different
mechanisms.

The most straightforward mechanism for the effects of RFGD
treatment on oxide charge may be an increase in the surface con-
centration of acidic M−OH groups that are likely to be deprotonated
at alkaline pH or lead to the formation of. [M−OH2]+ groups at
acidic pH. This explanation is supported by reports that RFGD treat-
ment may increase the number of surface metal hydroxyl groups
[22,25,26]. Additional factors may be involved in the effects of RFGD
treatment on the metal oxide surface charge. As discussed previ-
ously, the RF plasma is composed of a myriad of chemical species,
including electrons, reactive monoatomic cations and anions, and
free radicals [42]. Some of these species produced in RF plasmas can
collide with or become implanted onto the substrate, thereby pro-
ducing ionization or bond rearrangements in surface atoms that
may lead to changes in net surface charge. For example, optical
emission spectroscopy and Langmuir probe techniques of RFGD
argon/oxygen mixtures have shown the existence of oxygen radi-
cals and O− negative ions created within the plasma or substrate
surface [52]. In addition, Olthoff et al. [53,54] found the presence of
O2

+ and less abundant O+ ions in Argon/Oxygen plasma mixtures.
It has been suggested that O2 plasma treatment could promote the
oxidation of surface oxygen [55], possibly leading to the formation
of neutral M−O• free radicals (from deprotonated M−O− groups)
and an increase in the net positive surface charge. In any case, the
effects of heat and RFGD on the relative surface concentrations of
basic and acidic metal hydroxides will be determined by ESCA in
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a future study to clarify the physico-chemical mechanism(s) of the
RFGD treatment.

Atomic force measurements made in nitrate buffer compared to
the unbuffered (pure water) condition suggest that surface charge
was influenced to some degree by the adsorption of counter-ions,
which has been proposed as a mechanism of charge regulation for
Si3N4 surfaces [40]. For example, control samples were found to
have a net positive surface charge between pH 5 and 6.4 in nitrate
buffer but exhibited no net surface charge when measurements
were made at pH 5.6 in water. These findings suggest that when
the control oxide surface, which is nominally neutral at pH 5.6 in
water, is placed in nitrate buffer (at pH 5–6.4), the binding of Na+
ions to M−O− groups dominates the binding of nitrate anions to
[M−OH2]+ groups thereby contributing to a net positive surface
charge. However, findings that either treatment created a negative
net surface charge in buffer between pH 5 and 6.4 suggests that the
M–OH redox balance, not counter-ion binding, is the predominant
surface charging mechanism for the treated samples. The mecha-
nism for charge regulation will be further examined using atomic
force measurements by altering the ionic strength of the buffer in
future studies.

4.3. Effect of surface treatments on hydrophilicity

The physico-chemical mechanism(s) through which surface
treatments modify the hydrophilicity of Ti6Al4V also remains to
be addressed. A mechanistic explanation for the effects of heat
treatment on the wettablity of the Ti6Al4V alloy might involve a
simple increase in the surface concentration of M–OH groups that
can participate in hydrogen bonding [56] as a result of the oxidative
treatment. It is the hydrogen bonding of water to surface functional
groups that exerts the greatest influence on wettability [57,58].
Since our heat treatment increased the surface concentrations of
both AlOx and VOx, it might also be argued that the observed
increase in hydrophilicity promoted by heating Ti6Al4V samples
is partially due to oxide compositional changes [59,60]. However,
when sessile drop contact angle measures were performed on com-
mercial pure titanium (grade 2) and titanium alloy (Ti6Al4V) using
water, formamide, and diiodanethane, there was no significant dif-
ference in wettability for all the test liquids [59]. Therefore, it would
appear that the observed difference in wettability between control
and heat-treated samples is predominantly due to factors other
than changes in the oxide’s elemental composition.

The effects of heat treatment on the topography and roughness
of the Ti6Al4V oxide may be involved in the observed increases
in hydrophilicity. Surface roughness has been demonstrated to
decrease the water contact angle of a hydrophilic surface (con-
tact angle less than 45◦) [56,61,62]. We have previously reported
that heating increased the surface roughness through oxide growth
on a highly polished control sample [13]. Since, in the current
study, we determined that RFGD increased surface charge more
than heat, yet both were equally wettable, this would suggest
that roughness plays a significant role in the wettability of the
heat-treated samples. Furthermore, it has been [63] reported that
anodically oxidized Ti6Al4V exhibits a hydrophilic porous oxide.
We observed that heating Ti6Al4V metal forms an intricate lattice
of nano–elevations of the surface oxide. This morphology would
increase the oxide’s porosity and thus would help to explain the
observed increase in wettability.

Wettability was also greatly enhanced after RF oxygen plasma
treatment although the mechanism(s) may be different from those
discussed above for heat treatment. One mechanism may involve
an increase in surface hydroxyl functionalities [22,25,26]. Alterna-
tively, it has been suggested that the increased wettability observed
after O2 plasma treatment is due to the oxidation of surface oxy-
gen forming a neutral O• radical [55]. Combining two neutral

radicals produces resultant oxygen vacancies within the oxide
[55] that favor the adsorption of water on the TiO2 film. There-
fore, especially since we have shown that the RFGD treatment of
highly polished control Ti6Al4V samples did not increase surface
roughness or alter topography, it is likely that RFGD increases wet-
tability purely through direct effects on the chemistry of the surface
oxide.

4.4. Conclusions

In this study, we have demonstrated that RFGD and heat treat-
ment of a titanium alloy have very different effects on the surface
oxide. Heat treatment increased the oxide’s hydrophilicity and
negative net charge and altered oxide atomic composition and
topography. In contrast, RFGD treatment increased the hydrophilic-
ity and negative net charge of the oxide without altering its
surface physical structure or atomic composition. In conclusion,
RFGD treatment of metallic implant materials may be used to
study the role of oxide surface charge, independently of other
oxide properties, in surface biomimetic protein activity and cellular
osteogenesis, as demonstrated in our companion article [15].
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used for creation of aluminium oxide thin films, Superficies y Vacio 9 (1999)
131–134.

[53] J.K. Olthoff, R.J. Van Brunt, S.B. Radovanov, Effect of electrode material on mea-
sured ion energy distributions in radio-frequency discharges, Appl. Phys. Lett.
67 (1995) 473–475.

[54] J.K. Olthoff, R.J. Van Brunt, S.B. Radovanov, Studies of ion kinetic-energy distri-
butions in the gaseous electronics conference RF reference cell, J. Res. Nat. Inst.
Stand. Technol. 100 (1995) 383–400.

[55] J.-B. Han, X. Wang, N. Wang, Z.-H. Wei, G.-P. Yu, Z.-G. Zhou, Q.-Q. Wang, Effect
of plasma treatment on hydrophilic properties of TiO2 thin films, Surf. Coat.
Technol. 200 (2006) 4876–4878.

[56] H.P. Jennissen, Ultra-hydrophile metallische biomaterialien, Biomaterialien 2
(2001) 45–53.

[57] E.A. Vogler, in: J. Berg (Ed.), Interfacial Chemistry in Biomaterial Science: Wet-
tability, Marcel Dekker, New York, 1993, pp. 184–250.

[58] E.A. Vogler, Structure and reactivity of water at biomaterial surfaces, Adv. Col-
loids Interface Sci. 74 (1998) 69–117.

[59] J.T. Woodward, H. Gwin, D.K. Schwartz, Contact angles on surfaces with meso-
scopic chemical heterogeneity, Langmuir 16 (2000) 2957–2961.

[60] T. Sun, W. Song, L. Jiang, Control over the responsive wettability of poly(N-
isopropylamide0 film in a large extent by introducing an irresponsive molecule,
Chem. Commun. 13 (2005) 1723–1725.

[61] A.W. Adamson, Physical Chemistry of Surface, John Wiley & Sons, Inc., New
York, 1990.

[62] L.J. Lim, Y. Oshida, Initial contact angle measurements on variously treated
dental/medical titanium materials, Biomed. Mate. Eng. 11 (2001) 325–
341.

[63] V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M.Y. Perrin, M.
Aucouturier, Structure and physicochemistry of anodic oxide films on titanium
and TA6V alloy, Surf. Interface Anal. 27 (1999) 629–637.


