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Abstract

We show that the manifestation of quantum interference in graphene is very different from that in

conventional two-dimensional systems. Due to the chiral nature of charge carriers, it is sensitive not

only to inelastic, phase-breaking scattering, but also to a number of elastic scattering processes. We

study weak localization in different samples and at different carrier densities, including the Dirac

region, and find the characteristic rates that determine it. We show how the shape and quality of

graphene flakes affect the values of the elastic and inelastic rates and discuss their physical origin.

PACS numbers: 73.23.-b, 72.15.Rn, 73.43.Qt
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The quantum correction to the conductivity of two-dimensional systems due to electron

interference has been studied for more than twenty years [1, 2]. This phenomenon of weak

localization (WL) has become a tool to determine the processes responsible for electron

dephasing due to inelastic electron scattering or scattering by magnetic impurities [2, 3].

In this well-established field of research it comes as a surprise to discover that in a new

two-dimensional system, graphene [4], WL does not follow the standard convention that it

is only controlled by inelastic and spin-flip processes. First attempts to measure WL in

graphene have produced contradictory results that tentatively point towards this unusual

behavior [5, 6, 7]. Measurements on graphene flakes fabricated by mechanical exfoliation

[5] have shown that in the majority of samples WL is totally suppressed. In contrast, in a

sample fabricated by an alternative, epitaxial method, WL has been distinctly seen, albeit

at a single (high) carrier density [7].

The theory of WL in graphene [8] predicts a remarkable feature: it should be sensitive not

only to inelastic, phase breaking processes, but also to different elastic scattering mechanisms

[8, 9, 10]. The reason for this is that charge carriers in graphene are chiral, that is, they

have an additional quantum number (pseudospin) [11]. Elastic scattering that breaks the

chirality will destroy the interference within each of the two graphene valleys in k-space.

Such defects, characterised by the scattering rate τ−1
s , include surface ripples, dislocations

and atomically sharp defects [5, 10]. Intra-valley WL can also be destroyed by anisotropy

of the Fermi surface in k-space, so called ‘trigonal warping’ [8], characterised by the rate

τ−1
w . There is one elastic process, however, which acts to restore the suppressed interference.

This is inter -valley scattering, which occurs at a rate τ−1
i on defects with size of the order

of the lattice spacing a. As the two valleys have opposite chirality and warping, inter-

valley scattering is expected to negate the chirality breaking and warping effects by allowing

interference of carriers from different valleys.

In this work we aim to examine what factors are responsible for the manifestation of WL in

graphene fabricated by mechanical exfoliation [4]. We study the magnetoconductivity (MC)

in perpendicular field of several samples with different quality and dimensions, with the aim

to control the relation between the scattering rates of carriers. These studies are performed

at different carrier densities controlled by a gate voltage Vg, which include densities around

the Dirac point at Vg = 0. This point is special as about it there is a change of the type of

carrier from electrons to holes and therefore the net carrier density is zero. The conductivity,
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however, is seen to remain at a finite value σmin ∼ e2/h and not drop to zero [12].
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FIG. 1: Resistivity of graphene flakes as a function of Vg at T =0.25 K. The mobilities (in

cm2V−1s−1) of the samples outside the Dirac region: 5100 (D), 7500 (F1), 10000 (F2) and 8000

(B). The insets show the first quantum Hall plateau, where filling factor ν = nh/4eB. The right

panel shows SEM images of the samples, where the positions of the contacts are shown as outlines.

The diagram at the foot of this panel shows the graphene sample on n+Si substrate (purple), cov-

ered by 300 nm SiO2 (blue) and contacted by Au/Cr (yellow). Control of the carrier density n is

achieved by Vg.

Figure 1 shows the resistivity as a function of Vg of four samples with different shapes

and mobilities: D, F1, F2 and B, each with a typical peak around the Dirac point. Sample

D is a square flake; F1 and F2 are rectangular with similar width to, but length larger than

D; B is a narrow strip of similar length to F1 and F2 but with much smaller width, Fig. 1

(right). Insets in Fig. 1 demonstrate measurements of the first quantum Hall plateau, which

shows a half-integer step (0.5× 4e2/h) – a clear indication that the samples are single-layer

graphene [12]. We wanted to see what difference the shape of the samples will make to the

WL – e.g., the narrowest sample B is expected to have the largest scattering rate τ−1
i , as the

edges could produce strong inter-valley scattering. To understand the relation between the
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scattering and the details of the graphene surface, the electrical measurements have been

complemented by atomic force microscope (AFM) imaging of the sample topography, which

have shown the presence of ripples, and additional rapid folds (ridges) across sample B (see

Supplementary Material below).
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FIG. 2: (color online) Magnetoconductivity observed in graphene flakes. (a) Dirac region of sample

D, |Vg| . 1 V, n . 7× 1010 cm−2; (b) sample D, Vg ' 14 V, n ' 1012 cm−2 (the legends of (a) and

(b) are the same); (c) samples F1 and F2 at T = 1 K, Vg ' 10 V, n ' 7× 1011 cm−2; (d) sample B,

Vg ' 11 V, n ' 8× 1011 cm−2. Lines are best fits to Eq. 1.

In order to study the conductivity correction caused by WL we must first account for

the reproducible conductance fluctuations clearly seen in Fig. 1. They are also present as a

function of magnetic field B and are caused by the fact that the graphene flakes are small

(comparable to the dephasing length Lφ), so that the average effect of WL is of the same
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order as the fluctuations which have the same, quantum interference origin [2]. We use the

procedure developed in [13] in the study of WL in bilayer graphene: R(Vg) is measured at

different B and the results are averaged over a range ∆Vg = 2 V shown in Fig. 1 by boxes

which contain a large number of fluctuations (see Supplementary Material below). Examples

of the obtained average MC, 4σ(B) = 〈σ(Vg, B) − σ(Vg, 0)〉∆Vg , are shown in Fig. 2 for

different samples. For the analysis of the results we use the theory [8] which predicts that

the MC is controlled by several scattering rates, both inelastic (τ−1
φ ) and elastic (τ−1

i , τ−1
s ,

τ−1
w ):

πh

e2
·∆σ(B) = F

(
τ−1
B

τ−1
φ

)
− F

(
τ−1
B

τ−1
φ + 2τ−1

i

)

−2F

(
τ−1
B

τ−1
φ + τ−1

i + τ−1
∗

)
. (1)

Here F (z) = ln z + ψ(0.5 + z−1), ψ(x) is the digamma function, τ−1
B = 4eDB/~, τ−1

φ is

the phase-breaking rate and τ−1
∗ = τ−1

s + τ−1
w . (The theory assumes that the momentum

relaxation rate τ−1
p is the highest in the system and comes from the Coulomb charges in

the SiO2 substrate and not atomically sharp defects, so that it does not affect the carrier

chirality.) The first term in Eq. (1) is responsible for weak localization, while the terms

with negative sign can result in ’anti-localization’.

We have found that among the different possible relations between the scattering rates,

the following holds in all studied samples: the intra-valley WL is strongly suppressed due

to a large rate τ−1
∗ , which approaches τ−1

p ; however, WL is clearly seen in all regions of the

carrier density, due to significant intra-valley scattering, τ−1
i ∼ τ−1

φ . At the same time, the

shape of the MC curves can be very different as it is controlled by the interplay between

all scattering rates involved, Fig. 2. Comparing two regions of carrier densities for square

sample D (Dirac region (a) and electron region (b)) one can see that in (a) the curves have a

much stronger downturn, indicating greater importance of the third (‘anti-localising’) term

in Eq. 1 due to smaller rate τ−1
∗ . For two geometrically similar samples F1 and F2 in

Fig. 2(c), it is seen that sample F2 (with largest mobility) has a more rapid increase of

the conductivity in smaller field (due to smaller τ−1
φ ) and more rapid downward turn of the

curves at larger fields (due to smaller τ−1
i ). For the narrow sample B, Fig. 2(d), the MC

curves do not turn down at all, indicating a very fast inter-valley rate τ−1
i and therefore

unimportance of all terms in Eq. 1 apart from the first.
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FIG. 3: (color online) Characteristic lengths responsible for weak localization; dotted lines are

guides to the eye. Sample D: (a) the Dirac region (n . 7 × 1010 cm−2) and (b) electron region

(n ' 1012 cm−2); (c) Phase-breaking rate τ−1
φ = D/L2

φ as a function of T for different n. Inset to

(a) illustrates the saturation of Lφ at low T due to the sample size. Inset to (b) shows the scattering

process behind the length Li. Sample F2: (d) Temperature dependence of the characteristic lengths

in the electron region (n ' 1012 cm−2).

Figure 3 shows the temperature dependence of the characteristic lengths found from the

analysis of the MC by the best fit with Eq. 1. Figure 3(a,b) compares the results for the

Dirac and electron regions for sample D, where it is seen that Lφ is temperature dependent

at high T (≥ 3 K) but saturates at a value Lsat
φ at low temperatures. Figure 3(b,d) compares

the results for samples D and F2, at close values of carrier densities outside the Dirac region.
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Sample F2 is about three times longer, and one can see that Lsat
φ is larger in the longer sample

F2. (In sample B, Lsat
φ has also been found to be larger than in sample D.) This clearly

implies that the reason for the saturation is a limitation imposed by the sample size, and

not by scattering from a small, uncontrolled number of magnetic impurities [3].

In the Dirac region Lsat
φ has been found to have a smaller value than at larger carrier

densities. (It is interesting to note that the narrow sample, B, shows the biggest decrease

of Lsat
φ in the Dirac region, while the square sample, D, the smallest.) This decrease can be

related to the inhomogeneity of the sample at low carrier densities. It can result in formation

of electron–hole puddles, so that at Vg = 0 there are equal densities of electrons and holes

and not zero density of each type of carrier. Inhomogeneity can modify the geometry of

conducting paths and decrease the effective dimensions of the sample, resulting in a smaller

value of Lsat
φ .

The temperature dependence of Lφ contains information about the inelastic mechanism

responsible for the dephasing of charge carriers. There are suggestions that electron-electron

(e-e) interaction, the main mechanism of dephasing at low T , is different in graphene com-

pared with other systems [14]. To examine this we have analyzed the T−dependence of the

dephasing rates found from analysis of the WL. Figure 3(c) shows the phase-breaking rate in

different density regions of sample D. (To find τ−1
φ we use the relation Lφ = (Dτφ)1/2, where

the diffusion coefficient D = vF l/2 is determined from the mean free path l = h/2e2kFρ.

For the Dirac region, where the puddles can be formed, the value of the Fermi wavenumber

kF (inside the puddle) is simply estimated at the boundary of the region where the MC is

studied, |Vg| = 1 V, Fig. 1.) Our results show that electron dephasing rate obeys the usual,

linear T−dependence for e-e scattering in the ‘dirty limit’, Tτp < 1 [1]: τ−1
ϕ = βkBT ln g/~g,

where g = σh/e2. (In our samples the parameter Tτp varies from 0.002 to 0.4 in the studied

temperature range 0.25–25 K.) The empirical coefficient β is found to be between 1 and

2 in all studied regions, Fig. 3(c), and all samples. Therefore, we can conclude that while

electron interference in graphene is significantly different from other systems, e-e interaction

does not show unconventional behavior.

In addition to the analysis of the WL, we have also analyzed conductance fluctuations as

a function of B and Vg using standard relations in terms of Lφ [2]. This analysis has given

values of Lφ close to those found from the analysis of WL (see Supplementary Material

below).
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Now let us discuss the behavior of the elastic, inter-valley length Li which we have verified

to be essentially T−independent in all samples. In samples D, F1 and F2 the found Li is

comparable to the width of the samples (approximately half the width). This means that,

indeed, the sample edges make significant contributions to inter-valley scattering. This is

consistent with the fact that the narrowest sample B has shown the smallest value of Li.

However, the value of Li for sample B is about three times smaller than the sample width.

This can be due to the presence of rapid ridges of height ∼ 1.5 nm observed in this sample

by AFM, Fig. 4(a). They are separated by a distance smaller than the sample width and can

be another source of inter-valley scattering. This suggests that the inter-valley scattering is

controlled not only by the edges but also by the defects in the inner part of the sample.

We have found that the intra-valley scattering length L∗ is much smaller than the inter-

valley length Li, Fig. 3, and approaches the mean free path. There are several possible

mechanisms that can be responsible for the observed large intra-valley scattering rate and

resulting strong suppression of WL in one valley (see Supplementary Material below). Scat-

tering by atomically-sharp defects cannot explain this: such scattering is also a source of

strong inter-valley scattering, so that Li and L∗ would be comparable if this mechanism was

dominant. The smaller value of L∗ in experiment must therefore be due to an additional

scattering rate which affects L∗ but not Li: from warping [8], or from the defects of the

crystal structure that are large on the atomic scale [5, 10]. Estimation of the expected τ−1
w

using theory [8] gives a value of τ−1
w ≤ 0.3 ps−1 which is much smaller than the experimental

τ−1
∗ ∼ 10 ps−1. Therefore, the reason for small L∗ could lie in the defects of the crystal

structure of graphene flakes: ripples and dislocations. (The strain in the lattice induced by

such defects acts as a source of effective magnetic field that can destroy WL.) As the dislo-

cation core is also a source of inter-valley scattering, their separation can be estimated from

the known value of Li. This value is much larger than the dislocation separation ξ ∼50 nm

required to explain the small value of L∗. (This value of ξ is obtained using the relation

τ−1
s = vF/kF ξ

2 [10].) The effect of ripples on the graphene surface is also negligible in

our samples, if we use the estimation of this effect from [5]. The roughness of our samples

found from AFM measurements, Fig. 4(b,c), is h ' 0.3 nm and d ' 10 nm (in agreement

with [15]), which gives for a typical Lφ ≈ 1µm an effective magnetic field Beff ∼ 1 mT.

This is a small correction to the real fields used in experiment, Fig. 2. There is one more

mechanism that can introduce an asymmetry in the crystal structure and hence break the

8



chirality of carriers: a potential gradient coming from charged impurities in the substrate.

Our estimation of its effect using the approach of [10] has also given a negligible result (see

Supplementary Material below). Therefore, the obtained values of the scattering rate τ−1
∗

are much higher than those predicted by existing models, and more detailed theories of the

mechanisms of intra-valley suppression of WL in graphene are required.
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FIG. 4: Atomic force microscope images of graphene surfaces. Below the image of sample B (a) is

the surface profile averaged over the width of the sample. Below the images of the topography of

samples D (b) and F2 (c) are the corresponding autocorrelation functions of the surface roughness.

In summary, we have shown that the weak localization correction in graphene exists at

all studied carrier densities, including the Dirac region. Its manifestation is determined by

the interplay of inelastic and elastic scattering mechanisms, which makes WL a sensitive

tool to detect the defects responsible for inter-valley scattering and chirality breaking. We

show that, in spite of a strong intra-valley suppression of WL, the quantum interference

correction to the conductivity is clearly seen due to significant inter-valley scattering. Total

suppression of WL is only possible in experiments where inter-valley scattering is negligible,

9



i.e. in very large samples without sharp defects in the bulk.
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Weak localisation in graphene flakes: Supplementary
material
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Samples

Samples were manufactured using the method of mechanical exfoliation of highly-oriented

pyrolytic graphite devised in [4], on a n+Si/SiO2 substrate with oxide layer of thickness

t = 300 nm. Lithographically defined Au/Cr contacts were subsequently made to each flake.

Resistance measurements were carried out in the temperature range from 0.25 to 25 K using a

standard lock-in technique with 1 nA driving current. Samples B, D, F1 are two-terminal and

F2 is four-terminal (the additional contacts were used to account for the contact resistance).

The concentration of carriers (electrons n and holes p) in graphene is determined by the

capacitance between the graphene and n+Si substrate: e(p − n) = (εε0/t)Vg. There was a

small unintentional doping of the samples leading to a shift in gate voltage (∼ 5 V) of the

position of the resistance peak with respect to Vg = 0, which has been accounted for in the

main text. The graphene–Au/Cr contact resistance has been found from the deviation of

the height of the quantum Hall plateau from the expected value of 2e2/h (see insets to Fig.

1 of main text). The values of the contact resistance for samples F1 and D are about ∼100 Ω

and ∼600 Ω for sample B.

Averaging procedure and analysis of magnetoconductance

A method of effective averaging is important in small-sized samples to remove the in-

fluence of mesoscopic fluctuations, as without it one can get contradictory results for the

magnetoconductance (MC). (If we attempt to measure ∆σ(B) at different Vg, the character

of the MC depends on the specific point in Vg at which it is measured). Figure 1 shows

how the averaging is performed. For each temperature the conductivity of the sample as a

function of the gate voltage is first measured across a 2 V range at incremental values of the

magnetic field. Then the curve at zero magnetic field is subtracted from each curve and the

resulting difference is averaged across the 2 V gate voltage range. One can see from Fig. 1
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FIG. 1: Illustration of the averaging procedure of the magnetoconductance of sample F1 in two

density regions at two temperatures (only a fraction of ∆Vg is shown here): (a) Dirac region, (b)

electron region. Dotted lines show repeated sweeps at B = 0.

the average increase of 〈∆σ〉∆Vg with magnetic field. These averaged values of the MC are

plotted as a function of B in Figure 2 of the main text.

The perturbation theory of weak localization (WL) is applicable at kF l � 1 (a diffusive

metal). In our samples kF l, found from the conductivity σ = 2e2(kF l)/h, varies in the range

3–30, with the smallest values in the Dirac region: 4, 3, 8 and 6 for samples D, F1, F2 and B,
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respectively. Another limitation for the application of the diffusive theory of WL is B . Btr,

where the ‘transport’ magnetic field is found from the condition LB = (~/eB)1/2 ≈ l. This

limits the range of magnetic fields where we perform the analysis to B 6 100 mT.

For the narrowest sample B, the dephasing length is larger than its width and therefore

the 1D theory of WL [8] should be used in the analysis of its MC in small fields. However,

at fields where LB < W (W is the width of the sample) i.e. at B > 7 mT, the 2D theory

becomes applicable. As the bulk of the data is obtained in this range of the field, we have

used 2D theory (Eq. 1 in main text) to analyse the MC.

Comparison of characteristic lengths and times

Figure 2 shows for samples F1, F2 and D a comparison of the length L∗ with length Li,

as well as the values of the corresponding times τ∗ and τi (using Lx = (Dτx)
1/2) for different

carrier densities. We emphasise that in the analysis of the MC the value of L∗ is closely

linked to that of Li. In Eq. 1 the second and third terms have the same sign, therefore by a

slight increase of one of them and a corresponding decrease of the other, one can get a similar

agreement with experiment. Figure 2 shows not only the values found from the best fit (the

higher B-region being most sensitive to these two parameters) but also the synchronous

variation allowed in these values while retaining a good fit, indicated by arrows. In spite of

the variations, there are several trends seen in the figure. First, the value of Li is always

significantly larger than L∗ and somewhat larger in the better quality sample F2. Second,

there is a decrease of Li with increasing carrier density, although its value is smaller in the

Dirac region. Finally, there is a decrease of L∗ when the carrier density is increased above

the Dirac region. The dashed curves in Fig. 2 indicate the expected decrease of Li and τi if

the scattering rate is proportional to the density of states, which increases linearly with the

Fermi energy εF ∝ V
1/2
g .

Estimations of the effects suppressing WL in a single valley

Trigonal warping

According to [8] the breaking of the time-reversal symmetry in one valley can occur due to

the suppression of backscattering by the trigonal warping of the Fermi surface. The trigonal

warping rate is

τ−1
w = 2τp(µε

2
F/~v2

F )2 ,

where τp is the momentum relaxation time, vF ≈ 106 ms−1 is the Fermi velocity and µ is the
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FIG. 2: Comparison of characteristic lengths and times for samples F1, F2 and D at different

carrier densities.

structural parameter equal to µ = γ0a
2/8~2. Here γ0 ≈ 3 eV is the nearest-neighbour hop-

ping energy and a ≈ 0.26 nm is the lattice constant in graphene. For the typical parameters

in our samples we obtain τ−1
w ≈ 0.001 ps−1 for the Dirac region (εF ≈ 30 meV, τp ≈ 0.1 ps)

and τ−1
w ≈ 0.3 ps−1 for the highest measured concentration (εF ≈ 130 meV, τp ≈ 0.05 ps).

Trigonal warping of the Fermi surface is therefore a very weak effect compared to other intra-

valley scattering mechanisms and cannot be the main reason of the strong chirality-breaking

observed in our experiments (τ−1
∗ ≈ τ−1

p ).

Dislocations
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Another possible mechanism of chirality breaking in the graphene sheet is dislocations

in the honeycomb lattice [10]. If the trajectory of a quasiparticle goes near the core of

a dislocation it leads to a change of the phase due to the induced strain. For randomly

distributed dislocations the scattering rate related to this mechanism is

τ−1
gauge ≈

vF
kF ξ2

,

where ξ is the average distance between dislocations [10]. In order to obtain the experi-

mentally found chirality-breaking rate τ−1
∗ ≈ 10 – 20 ps−1 the distance ξ should be about

15 − 50 nm. However, the cores of the dislocations should also cause inter-valley scatter-

ing, which is why this estimation is in contradiction with the relatively large value of the

inter-valley scattering length (Li ≈ 1µm) observed experimentally.

Ripples

As proposed in [5], ripples in the graphene layer on a silica substrate can lead to sup-

pression of weak localization because of the effective magnetic field generated by strain of

the interatomic bonds. The vector potential corresponding to a single ripple with diameter

d and height h is [5]:

A =
γ0 |∇h|2

evF
,

where ∇h ≈ h/d. The flux through one ripple is Φ =
∮

A ·dl ≈ Ad and Φ =
∫

B ·dS ≈ Bd2,

therefore the magnetic field associated with one ripple is

B ≈ A

d
=

γ0

evF

h2

d3
.

Since the curvature vector of a ripple is random, the resulting magnetic field through the area

limited by the dephasing length Lφ and containing N ≈ L2
φ/d

2 ripples should be averaged

as follows:

Beff =
B√
N

=
γ0

evFLφ

(
h

d

)2

.

The roughness of the graphene sheet found from AFM measurements is about 0.3 nm and

the size of the features is about 10 nm. This gives a value for the magnetic field associated

with one ripple B ∼ 0.1 T. For our typical value of Lφ ∼ 1µm the effective magnetic field is

then Beff ∼ 1 mT. Since suppression of the quantum interference requires a magnetic field

Beff > Btr ∼ 0.1 T, the estimated value is too small to destroy the localization effect. The
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random magnetic field can only introduce an uncertainty in the value of B, Fig. 2 of the

main text, comparable to the accuracy to which the field is set by the power supply.

Potential gradients

The last mechanism which can produce the breaking of time-reversal symmetry is a

gradient of potential coming from the charged impurities in the substrate. A potential

gradient leads to a distortion of the dispersion curve of a single valley and hence breaks the

valley symmetry. As shown in [10] the resulting scattering rate can be estimated as

τ−1
grad ≈ τ−1

p (kFa)2 .

In order to get τ−1
grad ≈ τ−1

p one should have kFa ≈ 1. This corresponds to the carrier density

n = k2
F/π ≈ 5 ·1014 cm−2, which is two orders of magnitude higher than the densities studied

in the experiment.

We conclude from these calculations that all existing estimations for the chirality-breaking

scattering rates are not sufficient to explain our experimental results.

Scanning probe microscopy studies

The atomic force microscope used in this work was an Ntegra Aura from NT-MDT.

We used non-contact tips NSG01 with resonance of 150 Hz at an amplitude of . 40 nm.

To obtain high resolution in the xy-plane ‘diamond-like carbon’ coated tips with curvature

radius 1− 3 nm were used; tip convolution therefore limited feature resolution to this scale.

To remove the influence of the water layer present on the silica substrate all measurements

were performed in an atmosphere of dry nitrogen at 3 mbar, giving a tip resonance quality

factor Q ≈ 1000. The noise in the z-scale (height) is of the order 0.02 nm measured on pure

graphite and silica with the AFM operating with acoustic and vibrational isolation.

We found that the surfaces of the silica and the graphene after lithographic processing

were covered in droplets of PMMA with height ≈ 2 nm, similar to the findings of [15]. They

reduced the image quality and also made determination of the step edge between graphene

and silica difficult. To obtain the scans of clean graphene shown in Fig. 4 of the main text

we mechanically cleaned the surfaces. Figure 3(a) shows a phase contrast image of sample

F2 where both the PMMA droplets and a cleaned area are seen.

To understand the extent to which the PMMA droplets exist under the flake (due to the

lithographic process of depositing location markers prior to the deposition of the graphene
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FIG. 3: AFM measurements of sample F2. (a) Phase contrast image where the PMMA droplets

on the left and cleaned area on the right can be seen, with two regions in the clean area highlighted

by boxes. (b) Magnified topographic image of box ‘(b)’ showing the torn edge of the graphene

flake. (c) Magnified phase contrast image of box ‘(c)’ with silica (top) and graphene (bottom). (d)

Autocorrelation analysis of the roughness in the boxes highlighted in (c), with insets of silica (top)

and graphene topography (bottom). Scan (a) is 3µm size and the phase change at the graphene–

silica boundary is 2◦. Scans (b)–(c) have the same 0.8µm size. In (b) the colour-scale varies over

4 nm.

flake), we introduced a tear and fold into the sample F2 as seen in Fig. 3(b). We see

first that the surface under the flake is indeed free from PMMA droplets and therefore the

topography of the flake is only influenced by the silica roughness. (This conclusion was

also confirmed by similar measurements on other flakes). Having a flake fold allows us

to determine better the thickness of the flake, by measuring the step height between two

graphene areas (as opposed to measurements of the step height between silica and graphene

which always give a larger value of the step, ∼ 1 nm). We find that the thickness of the
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flake is < 0.5 nm, which confirms that the flake is a monolayer (supporting the results of

the quantum Hall measurements discussed in the main text). An interesting result from the

tear is that the graphene flake has a tendency to form larger ripples when detached from the

silica surface, with a ripple height ∼ 0.5 nm and width 20 nm. (The roughness of the flake

on the substrate is ∼ 0.3 nm, see the main text.) When comparing the surface roughness of

silica and graphene, Fig. 3(c,d), we see that the surface height variation on the clean silica

surface is ∼ 60% larger than on the graphene, i.e. graphene significantly smoothes out the

substrate roughness.

18


	References

